zoukankan      html  css  js  c++  java
  • Inception(Pytorch实现)

    github博客传送门
    csdn博客传送门

    论文在此: Going deeper with convolutions

    论文下载: https://arxiv.org/pdf/1409.4842.pdf

    网络结构图:

    Inception
    详细
    参数

    Pytorch代码实现:

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    class Inception3(nn.Module):
    
        def __init__(self, num_classes=1000, aux_logits=True, transform_input=False):
            super(Inception3, self).__init__()
            self.aux_logits = aux_logits
            self.transform_input = transform_input
            self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
            self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
            self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
            self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
            self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
            self.Mixed_5b = InceptionA(192, pool_features=32)
            self.Mixed_5c = InceptionA(256, pool_features=64)
            self.Mixed_5d = InceptionA(288, pool_features=64)
            self.Mixed_6a = InceptionB(288)
            self.Mixed_6b = InceptionC(768, channels_7x7=128)
            self.Mixed_6c = InceptionC(768, channels_7x7=160)
            self.Mixed_6d = InceptionC(768, channels_7x7=160)
            self.Mixed_6e = InceptionC(768, channels_7x7=192)
            if aux_logits:
                self.AuxLogits = InceptionAux(768, num_classes)
            self.Mixed_7a = InceptionD(768)
            self.Mixed_7b = InceptionE(1280)
            self.Mixed_7c = InceptionE(2048)
            self.fc = nn.Linear(2048, num_classes)
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                    import scipy.stats as stats
                    stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                    X = stats.truncnorm(-2, 2, scale=stddev)
                    values = torch.Tensor(X.rvs(m.weight.data.numel()))
                    values = values.view(m.weight.data.size())
                    m.weight.data.copy_(values)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
    
        def forward(self, x):
            if self.transform_input:
                x = x.clone()
                x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
                x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
                x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            # 299 x 299 x 3
            x = self.Conv2d_1a_3x3(x)
            # 149 x 149 x 32
            x = self.Conv2d_2a_3x3(x)
            # 147 x 147 x 32
            x = self.Conv2d_2b_3x3(x)
            # 147 x 147 x 64
            x = F.max_pool2d(x, kernel_size=3, stride=2)
            # 73 x 73 x 64
            x = self.Conv2d_3b_1x1(x)
            # 73 x 73 x 80
            x = self.Conv2d_4a_3x3(x)
            # 71 x 71 x 192
            x = F.max_pool2d(x, kernel_size=3, stride=2)
            # 35 x 35 x 192
            x = self.Mixed_5b(x)
            # 35 x 35 x 256
            x = self.Mixed_5c(x)
            # 35 x 35 x 288
            x = self.Mixed_5d(x)
            # 35 x 35 x 288
            x = self.Mixed_6a(x)
            # 17 x 17 x 768
            x = self.Mixed_6b(x)
            # 17 x 17 x 768
            x = self.Mixed_6c(x)
            # 17 x 17 x 768
            x = self.Mixed_6d(x)
            # 17 x 17 x 768
            x = self.Mixed_6e(x)
            # 17 x 17 x 768
            if self.training and self.aux_logits:
                aux = self.AuxLogits(x)
            # 17 x 17 x 768
            x = self.Mixed_7a(x)
            # 8 x 8 x 1280
            x = self.Mixed_7b(x)
            # 8 x 8 x 2048
            x = self.Mixed_7c(x)
            # 8 x 8 x 2048
            x = F.avg_pool2d(x, kernel_size=8)
            # 1 x 1 x 2048
            x = F.dropout(x, training=self.training)
            # 1 x 1 x 2048
            x = x.view(x.size(0), -1)
            # 2048
            x = self.fc(x)
            # 1000 (num_classes)
            if self.training and self.aux_logits:
                return x, aux
            return x
    
    
    class InceptionA(nn.Module):
    
        def __init__(self, in_channels, pool_features):
            super(InceptionA, self).__init__()
            self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1)
    
            self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
            self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
    
            self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
            self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
            self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)
    
            self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)
    
        def forward(self, x):
            branch1x1 = self.branch1x1(x)
    
            branch5x5 = self.branch5x5_1(x)
            branch5x5 = self.branch5x5_2(branch5x5)
    
            branch3x3dbl = self.branch3x3dbl_1(x)
            branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
            branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
    
            branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
            branch_pool = self.branch_pool(branch_pool)
    
            outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
            return torch.cat(outputs, 1)
    
    
    class InceptionB(nn.Module):
    
        def __init__(self, in_channels):
            super(InceptionB, self).__init__()
            self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)
    
            self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
            self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
            self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)
    
        def forward(self, x):
            branch3x3 = self.branch3x3(x)
    
            branch3x3dbl = self.branch3x3dbl_1(x)
            branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
            branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
    
            branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
    
            outputs = [branch3x3, branch3x3dbl, branch_pool]
            return torch.cat(outputs, 1)
    
    
    class InceptionC(nn.Module):
    
        def __init__(self, in_channels, channels_7x7):
            super(InceptionC, self).__init__()
            self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)
    
            c7 = channels_7x7
            self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)
            self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
            self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))
    
            self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
            self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
            self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
            self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
            self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))
    
            self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
    
        def forward(self, x):
            branch1x1 = self.branch1x1(x)
    
            branch7x7 = self.branch7x7_1(x)
            branch7x7 = self.branch7x7_2(branch7x7)
            branch7x7 = self.branch7x7_3(branch7x7)
    
            branch7x7dbl = self.branch7x7dbl_1(x)
            branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
            branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
            branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
            branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
    
            branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
            branch_pool = self.branch_pool(branch_pool)
    
            outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
            return torch.cat(outputs, 1)
    
    
    class InceptionD(nn.Module):
    
        def __init__(self, in_channels):
            super(InceptionD, self).__init__()
            self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
            self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)
    
            self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
            self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
            self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
            self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)
    
        def forward(self, x):
            branch3x3 = self.branch3x3_1(x)
            branch3x3 = self.branch3x3_2(branch3x3)
    
            branch7x7x3 = self.branch7x7x3_1(x)
            branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
            branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
            branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
    
            branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
            outputs = [branch3x3, branch7x7x3, branch_pool]
            return torch.cat(outputs, 1)
    
    
    class InceptionE(nn.Module):
    
        def __init__(self, in_channels):
            super(InceptionE, self).__init__()
            self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)
    
            self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
            self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
            self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
    
            self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
            self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
            self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
            self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
    
            self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
    
        def forward(self, x):
            branch1x1 = self.branch1x1(x)
    
            branch3x3 = self.branch3x3_1(x)
            branch3x3 = [
                self.branch3x3_2a(branch3x3),
                self.branch3x3_2b(branch3x3),
            ]
            branch3x3 = torch.cat(branch3x3, 1)
    
            branch3x3dbl = self.branch3x3dbl_1(x)
            branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
            branch3x3dbl = [
                self.branch3x3dbl_3a(branch3x3dbl),
                self.branch3x3dbl_3b(branch3x3dbl),
            ]
            branch3x3dbl = torch.cat(branch3x3dbl, 1)
    
            branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
            branch_pool = self.branch_pool(branch_pool)
    
            outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
            return torch.cat(outputs, 1)
    
    
    class InceptionAux(nn.Module):
    
        def __init__(self, in_channels, num_classes):
            super(InceptionAux, self).__init__()
            self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)
            self.conv1 = BasicConv2d(128, 768, kernel_size=5)
            self.conv1.stddev = 0.01
            self.fc = nn.Linear(768, num_classes)
            self.fc.stddev = 0.001
    
        def forward(self, x):
            # 17 x 17 x 768
            x = F.avg_pool2d(x, kernel_size=5, stride=3)
            # 5 x 5 x 768
            x = self.conv0(x)
            # 5 x 5 x 128
            x = self.conv1(x)
            # 1 x 1 x 768
            x = x.view(x.size(0), -1)
            # 768
            x = self.fc(x)
            # 1000
            return x
    
    
    class BasicConv2d(nn.Module):
    
        def __init__(self, in_channels, out_channels, **kwargs):
            super(BasicConv2d, self).__init__()
            self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
            self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
    
        def forward(self, x):
            x = self.conv(x)
            x = self.bn(x)
            return F.relu(x, inplace=True)
           
    if __name__ == '__main__':
        # 'Inception3'
        # Example
        net = Inception3()
        print(net)
    
  • 相关阅读:
    轻量级MVVM框架Stylet介绍:(13) ValidatingModelBase
    轻量级MVVM框架Stylet介绍:(9)PropertyChangedBase
    轻量级MVVM框架Stylet介绍:(8)事件聚合器
    轻量级MVVM框架Stylet介绍:(12) BindableCollection
    轻量级MVVM框架Stylet介绍:(14) StyletIoC
    轻量级MVVM框架Stylet介绍:(5) Actions
    轻量级MVVM框架Stylet介绍:(10) Execute:调度到UI线程
    轻量级MVVM框架Stylet介绍:(7) MessageBox
    轻量级MVVM框架Stylet介绍:(6) WindowManager
    tushare的mysql的sql结构文件
  • 原文地址:https://www.cnblogs.com/Mrzhang3389/p/10127157.html
Copyright © 2011-2022 走看看