zoukankan      html  css  js  c++  java
  • 线性回归算法Sklearn完整复现

    1. 模型优化

    1.1 多项式与线性回归

    若线性回归模型太简单导致欠拟合时,我们可以增加特征多项式来让线性回归模型更好地拟合数据。比如有两个特征x1,x2,可以增加两特征的乘积作为新特征x3。还可以增加x1^2作为另一个新特征x4

    scikit-learn里,线性回归是由类sklearn.linear_model.LinearRegression实现,多项式由类sklearn.preprocessing.PolynomialFeatures实现。添加多项式特征需要一个管道把两个类串起来,要使用sklearn.pipline.Pipeline

    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.pipeline import Pipeline
    
    def polynomial_model(degree = 1):
        polynomial_features = PolynomialFeatures(degree = degree,
                                                include_bias = False)
        linear_regression = LinearRegression()
        #这是一个流水线,先增加多项式阶数,然后再用线性回归算法来拟合数据
        pipline = Pipeline([("polynomial_features",polynomial_features),
                           ("linear_regression",linear_regression)])
        return pipline
    

    fitfit_transformtransform的区别详解:https://blog.csdn.net/weixin_38278334/article/details/82971752

    scikit-learn里,使用LinearRegression进行线性回归时,可以指定normalize = True来对数据进行归一化处理。

    2. 示例:使用线性回归算法拟合正弦函数

    #生成200个在[-2Π,2Π]区间内的正弦函数上的点,并给这些点加上随机噪声
    import numpy as np
    n_dots = 200
    
    X = np.linspace(-2 * np.pi,2 * np.pi,n_dots)
    Y = np.sin(X) + 0.2 * np.random.rand(n_dots) - 0.1
    X = X.reshape(-1,1)
    Y = Y.reshape(-1,1)
    
    #分别用2,3,5,10阶多项式来拟合数据集
    from sklearn.metrics import mean_squared_error
    
    degrees = [2,3,5,10]
    results = []
    for d in degrees:
        model = polynomial_model(degree=d)
        model.fit(X,Y)
        train_score = model.score(X,Y)
        mse = mean_squared_error(Y,model.predict(X))
        results.append({"model":model,"degree":d,"score":
                           train_score,"mse":mse})
    for r in results:
        print("degree: {};train score: {};mean squared error: {}".format(
            r["degree"],r["score"],r["mse"]))
    
    degree: 2;train score: 0.14691964884268827;mean squared error: 0.4337561603823593
    degree: 3;train score: 0.2725519790368923;mean squared error: 0.3698773040811927
    degree: 5;train score: 0.8949982058380093;mean squared error: 0.053389079946778877
    degree: 10;train score: 0.9936659355081904;mean squared error: 0.0032206104499468945
    
    results
    
    [{'model': Pipeline(steps=[('polynomial_features', PolynomialFeatures(include_bias=False)),
                      ('linear_regression', LinearRegression())]),
      'degree': 2,
      'score': 0.14691964884268827,
      'mse': 0.4337561603823593},
     {'model': Pipeline(steps=[('polynomial_features',
                       PolynomialFeatures(degree=3, include_bias=False)),
                      ('linear_regression', LinearRegression())]),
      'degree': 3,
      'score': 0.2725519790368923,
      'mse': 0.3698773040811927},
     {'model': Pipeline(steps=[('polynomial_features',
                       PolynomialFeatures(degree=5, include_bias=False)),
                      ('linear_regression', LinearRegression())]),
      'degree': 5,
      'score': 0.8949982058380093,
      'mse': 0.053389079946778877},
     {'model': Pipeline(steps=[('polynomial_features',
                       PolynomialFeatures(degree=10, include_bias=False)),
                      ('linear_regression', LinearRegression())]),
      'degree': 10,
      'score': 0.9936659355081904,
      'mse': 0.0032206104499468945}]
    

    使用mean_squared_error算出均方根误差,即实际的点和模型预测的点之间的距离,均方根误差越小说明模型拟合效果越好

    #绘制不同模型拟合效果
    from matplotlib.figure import SubplotParams
    import matplotlib.pyplot as plt
    
    plt.figure(figsize = (12,6),dpi = 200, subplotpars = SubplotParams(hspace = 0.3))
    for i,r in enumerate(results):
        fig = plt.subplot(2,2,i+1)
        plt.xlim(-8,8)
        plt.title("LinearRegression degree={}".format(r['degree']))
        plt.scatter(X,Y,s = 5,c = 'b',alpha = 0.5)
        plt.plot(X,r['model'].predict(X),'r-')
    


    3. 示例:测算房价

    使用scikit-learn自带的波士顿房价数据集来训练模型,然后用模型来测算房价,

    数据集收集的13个特征:

    • CRIM:城镇人均犯罪率。
    • ZN:城镇超过25,000平方英尺的住宅区域的占地比例。
    • INDUS:城镇非零售用地占地比例。
    • CHAS:是否靠近河边,1为靠近,0为远离。
    • NOX:一氧化氮浓度。
    • RM:每套房产的平均房间个数。
    • AGE:在1940年之前就盖好,且业主自住的房子的比例。
    • DIS:与波士顿市中心的距离。
    • RAD:周边高速公道的便利性指数。
    • TAX:每10,000美元的财产税率。
    • PTRATIO:小学老师的比例。
    • B:城镇黑人的比例。
    • LSTAT:地位较低的人口比例。
    #导入数据
    from sklearn.datasets import load_boston
    
    boston = load_boston()
    X = boston.data
    y = boston.target
    X.shape
    
    (506, 13)
    
    X[0]
    
    array([6.320e-03, 1.800e+01, 2.310e+00, 0.000e+00, 5.380e-01, 6.575e+00,
           6.520e+01, 4.090e+00, 1.000e+00, 2.960e+02, 1.530e+01, 3.969e+02,
           4.980e+00])
    
    #查看特征标签
    boston.feature_names
    
    array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
           'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
    

    3.1 模型训练

    #将数据集分成两份
    from sklearn.model_selection import train_test_split
    
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size =0.2
                                                     ,random_state = 2)
    
    #训练模型并测试模型的准确性评分
    import time
    from sklearn.linear_model import LinearRegression
    
    model = LinearRegression()
    
    start = time.perf_counter()
    model.fit(X_train,y_train)
    cv_score = model.score(X_test,y_test)
    print('elaspe: {0:.6f};train_score: {1:0.6f};cv_score: {2:.6f}'.format(
        time.perf_counter() - start,train_score,cv_score))
    
    elaspe: 0.001908;train_score: 0.993666;cv_score: 0.778921
    

    3.2 模型优化

    #数据归一化
    model = LinearRegression(normalize = True)
    

    数据归一化处理只会加快算法收敛速度,优化算法训练效率,无法提升算法的准确性。

    #增加多项式特征,增加模型的复杂度
    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.pipeline import Pipeline
    
    def polynomial_model(degree = 1):
        polynomial_features = PolynomialFeatures(degree = degree,
                                                 include_bias = False)
        linear_regression = LinearRegression(normalize = True)
        pipeline = Pipeline([("polynomial_features",polynomial_features),(
            "linear_regression",linear_regression)])
        return pipeline
    
    #二阶多项式拟合数据
    model = polynomial_model(degree = 2)
    
    start = time.perf_counter()
    model.fit(X_train,y_train)
    
    train_score = model.score(X_train,y_train)
    cv_score = model.score(X_test,y_test)
    print('elaspe: {0:.6f};train_score: {1:0.6f};cv_score: {2:.6f}'.format(
            time.perf_counter() - start,train_score,cv_score))
    
    elaspe: 0.034632;train_score: 0.929593;cv_score: 0.896364
    
    #三阶多项式拟合数据
    model = polynomial_model(degree = 3)
    
    start = time.perf_counter()
    model.fit(X_train,y_train)
    
    train_score = model.score(X_train,y_train)
    cv_score = model.score(X_test,y_test)
    print('elaspe: {0:.6f};train_score: {1:0.6f};cv_score: {2:.6f}'.format(
            time.perf_counter() - start,train_score,cv_score))
    
    elaspe: 0.161353;train_score: 1.000000;cv_score: -318.549144
    

    三阶多项式出现了过拟合现象

    总共有13个输入特征,从一阶变成二阶多项式输入特征个数增加了几个?

    3.3 学习曲线

    from common.utils import plot_learning_curve
    from sklearn.model_selection import ShuffleSplit
    
    cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
    plt.figure(figsize=(18, 4))
    title = 'Learning Curves (degree={0})'
    degrees = [1, 2, 3]
    
    start = time.clock()
    plt.figure(figsize=(18, 4), dpi=200)
    for i in range(len(degrees)):
        plt.subplot(1, 3, i + 1)
        plot_learning_curve(plt, polynomial_model(degrees[i]), title.format(degrees[i]), X, y, ylim=(0.01, 1.01), cv=cv)
    
    print('elaspe: {0:.6f}'.format(time.clock()-start))
    

  • 相关阅读:
    .Net开发笔记(二十一) 反射在.net中的应用
    .Net开发笔记(二十)创建一个需要授权的第三方组件
    .Net开发笔记(十九) 创建一个可以可视化设计的对象
    .net开发笔记(十八) winform中的等待框
    .Net开发笔记(十七) 应用程序扩展
    java连接https时禁用证书验证.
    How to disable SSL certificate checking with Spring RestTemplate?(使用resttemplate访问https时禁用证书检查)
    webpack打包调试react并使用babel编译jsx配置方法
    动态改变spring定时任务执行频率
    在java代码中,用xslt处理xml文件
  • 原文地址:https://www.cnblogs.com/MurasameLory-chenyulong/p/15093946.html
Copyright © 2011-2022 走看看