zoukankan      html  css  js  c++  java
  • BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】

    题目

    小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数
    列,数列中的每个数都属于集合S。小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:
    给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为
    ,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大
    ,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

    输入格式

    一行,四个整数,N、M、x、|S|,其中|S|为集合S中元素个数。
    第二行,|S|个整数,表示集合S中的所有元素。
    1<=N<=10^9,3<=M<=8000,M为质数
    0<=x<=M-1,输入数据保证集合S中元素不重复x∈[1,m-1]
    集合中的数∈[0,m-1]

    输出格式

    一行,一个整数,表示你求出的种类数mod 1004535809的值。

    输入样例

    4 3 1 2

    1 2

    输出样例

    8

    【样例说明】

    可以生成的满足要求的不同的数列有(1,1,1,1)、(1,1,2,2)、(1,2,1,2)、(1,2,2,1)、

    (2,1,1,2)、(2,1,2,1)、(2,2,1,1)、(2,2,2,2)

    题解

    题目让人联想到类似数字组合方案数的东西
    可以构造一个生成函数解决,
    具体的参见生成函数的介绍

    但是数字组合是加法下的

    现在我们要解决乘法模意义下的组合
    我们考虑如何将乘法转化为加法
    很容易让人联想到数学中的对数

    [ln(a * b) = ln(a) + ln(b) ]

    而数论中有没有?
    那就是离散对数

    原根##

    即对于模数(m),原根(g)定义为:(g)(m)的阶为(varphi(m))
    也就是使(g^x equiv 1 pmod m)成立的最小的(x)(varphi(m))

    原根有这样一个充要的性质:
    (g^x)(x)取遍([0,m - 2])时,
    (g^x)的值将取遍([1,m - 1])

    由此我们能找到模(m)意义下所有非0数对应的唯一的幂次
    (g^A equiv a pmod m),我们就可以用(A)替代(a)
    而乘法(a * b)就对应成了(g^A * g^B = g^{A + B})这样的指数加法了

    回到原题
    我们就构造一个生成函数,

    [G(x) = sumlimits_{i = 1}^{m - 1} a_i * x^i ]

    其中(a_i)(1)当且仅当集合(S)中存在一个数使(a_i)为其对应的原根的幂次,否则(a_i)(0)

    我们求出

    [G^{n}(x) ]

    其中指数对(m - 1)取模

    我们找到题目中(x)对应的幂次的那一项的系数就是答案了

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    using namespace std;
    const int maxn = 20005,maxm = 100005,INF = 1000000000,P = 1004535809,G = 3;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int N,M,X,S,gg;
    int num[maxn],vis[8005],h[maxn];
    int qpow(int a,int b){
    	int ans = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) ans = 1ll * ans * a % P;
    	return ans;
    }
    void getG(){
    	for (int i = 2; ; i++){
    		memset(vis,0,sizeof(vis));
    		int g = 1,flag = 1; vis[1] = true;
    		for (int j = 1; j <= M - 2; j++){
    			g = 1ll * g * i % M;
    			if (vis[g]) {flag = 0; break;}
    		}
    		if (flag){
    			gg = i; return;
    		}
    	}
    }
    void gethash(){
    	h[1] = 0;
    	int tmp = 1;
    	for (int i = 1; i <= M - 2; i++){
    		tmp = 1ll * tmp * gg % M;
    		h[tmp] = i;
    	}
    }
    struct poly{int a[maxn];}F;
    int A[maxn],B[maxn],n,m,L,R[maxn],End;
    void NTT(int* a,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P; a[j + k + i] = (x - y + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    poly conv(const poly& a,const poly& b){
    	m = 2 * End; L = 0;
    	for (n = 1; n <= m; n <<= 1) L++;
    	for (int i = 0; i <= n; i++) A[i] = B[i] = 0;
    	for (int i = 0; i <= End; i++) A[i] = a.a[i],B[i] = b.a[i];
    	for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	NTT(A,1); NTT(B,1);
    	for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;
    	NTT(A,-1);
    	poly re;
    	for (int i = 0; i <= End; i++) re.a[i] = A[i];
    	for (int i = End + 1; i < n; i++) re.a[i % (M - 1)] = (re.a[i % (M - 1)] + A[i]) % P;
    	return re;
    }
    poly Qpow(poly a,int b){
    	poly re; re.a[0] = 1;
    	for (; b; b >>= 1,a = conv(a,a))
    		if (b & 1) re = conv(re,a);
    	return re;
    }
    int main(){
    	N = read(); M = read(); X = read(); S = read(); End = M - 2;
    	REP(i,S) num[i] = read();
    	getG();
    	gethash();
    	REP(i,S) if (num[i]) F.a[h[num[i]]]++;
    	F = Qpow(F,N);
    	printf("%d
    ",F.a[h[X]]);
    	return 0;
    }
    
    
  • 相关阅读:
    继承
    对象和封装
    类的无参、带参方法
    类和对象
    数组
    循环结构
    选择结构
    变量、数据类型和运算符
    快捷键
    MyEclipse与JDK的配置
  • 原文地址:https://www.cnblogs.com/Mychael/p/8848577.html
Copyright © 2011-2022 走看看