题意##
给出(n*n)网格((n<=10^5))
顶部有(K)个起点,底部有(K)个相对应的终点
每次只能向下或向右走
求有多少种从各个起点出发到达对应终点且路径不相交的路径?
对(10^9 + 7)取模
题解
按照组合数的套路
二维空间从一个h * w的矩形左上角走到右下角只向下或向右走的方案数为(C_{h + w}^{h})
这题直接求不好求,我们考虑容斥
可以发现,如果两个路径相交,就相当于交换了终点
那么我们枚举每个起点的终点,乘上一个容斥系数((-1)^t),其中(t)表示相交的路径个数,也可以看做选择的终点序列的逆序对个数
按照每个起点择每一个终点构造出一个组合数的矩阵,按照矩阵的的定义你会发现其实答案就等于这个矩阵的行列式
我们求一个行列式就做完了
这题太神了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 105,maxm = 200005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL fac[maxm],inv[maxm],fv[maxm];
void init(){
fac[0] = 1;
for (int i = 1; i <= 200000; i++) fac[i] = fac[i - 1] * i % P;
inv[0] = inv[1] = 1;
for (int i = 2; i <= 200000; i++) inv[i] = (P - P / i) * inv[P % i] % P;
fv[0] = 1;
for (int i = 1; i <= 200000; i++) fv[i] = fv[i - 1] * inv[i] % P;
}
LL qpow(LL a,LL b){
LL ans = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) ans = ans * a % P;
return ans;
}
LL C(int n,int m){
if (m > n) return 0;
return fac[n] * fv[m] % P * fv[n - m] % P;
}
int n,K,a[maxn],b[maxn];
LL A[maxn][maxn],ans;
void gause(){
ans = 1;
for (int i = 1; i <= K; i++){
int pos = i;
while (A[pos][i] == 0 && pos <= K) pos++;
if (pos > K){ans = 0; return;}
if (pos != i) for (int j = i; j <= K; j++) swap(A[i][j],A[pos][j]),ans = -ans;
for (int j = i + 1; j <= K; j++){
LL t = A[j][i] * qpow(A[i][i],P - 2) % P;
for (int k = i; k <= K; k++)
A[j][k] = (A[j][k] - A[i][k] * t % P + P) % P;
}
ans = ans * A[i][i] % P;
}
ans = (ans % P + P) % P;
}
int main(){
ios::sync_with_stdio(false);
init();
int T = read();
while (T--){
n = read(); K = read();
REP(i,K) a[i] = read();
REP(i,K) b[i] = read();
REP(i,K) REP(j,K) A[i][j] = C(n - 1 + b[j] - a[i],n - 1);
gause();
cout << ans << endl;
}
return 0;
}