zoukankan      html  css  js  c++  java
  • BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目

    在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。

    现在他想计算这样一个函数的值:

    S(i, j)表示第二类斯特林数,递推公式为:
    S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
    边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
    你能帮帮他吗?

    输入格式

    输入只有一个正整数

    输出格式

    输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000

    输入样例

    3

    输出样例

    87

    题解

    当第二类斯特林数(j > i)时值为(0)
    所以我们实际求:

    [egin{aligned} ans &= sumlimits_{i = 0}^{n} sumlimits_{j = 0}^{n} egin{Bmatrix} i \ j end{Bmatrix} 2^{j}j! \ &= sumlimits_{i = 0}^{n} sumlimits_{j = 0}^{n} 2^{j}j! frac{1}{j!} sumlimits_{k = 0}^{j} (-1)^{k}{j choose k}(j - k)^{i} \ &= sumlimits_{i = 0}^{n} sumlimits_{j = 0}^{n} 2^{j}j! sumlimits_{k = 0}^{j} frac{(-1)^{k}}{k!} * frac{(j - k)^{i}}{(j - k)!} \ &= sumlimits_{j = 0}^{n} 2^{j}j! sumlimits_{k = 0}^{j} frac{(-1)^{k}}{k!} * frac{sumlimits_{i = 0}^{n} (j - k)^{i}}{(j - k)!} \ end{aligned} ]

    NTT即可

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    using namespace std;
    const int maxn = 400005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const int G = 3,P = 998244353;
    int fac[maxn],fv[maxn],inv[maxn],bin[maxn],g[maxn];
    int L,R[maxn],A[maxn],B[maxn],n,m,N;
    inline int qpow(int a,int b){
    	int ans = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) ans = 1ll * ans * a % P;
    	return ans;
    }
    void init(){
    	fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
    	bin[0] = 1; bin[1] = 2;
    	g[0] = 1; g[1] = N + 1;
    	for (int i = 2; i <= N; i++){
    		fac[i] = 1ll * fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = 1ll * fv[i - 1] * inv[i] % P;
    		bin[i] = 2ll * bin[i - 1] % P;
    		g[i] = 1ll * (1ll * qpow(i,N + 1) - 1 + P) % P * inv[i - 1] % P;
    	}
    }
    void NTT(int* a,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P; a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    int main(){
    	N = read();
    	init();
    	for (int i = 0; i <= N; i++){
    		A[i] = ((i & 1) ? -1ll : 1ll) * fv[i] % P;
    		B[i] = 1ll * g[i] * fv[i] % P;
    	}
    	m = N + N; L = 0;
    	for (n = 1; n <= m; n <<= 1) L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	NTT(A,1); NTT(B,1);
    	for (int i = 0; i < n; i++) A[i] = 1ll * A[i] % P * B[i] % P;
    	NTT(A,-1);
    	int ans = 0;
    	for (int i = 0; i <= N; i++)
    		ans = (ans + 1ll * bin[i] * fac[i] % P * A[i] % P) % P;
    	printf("%d
    ",(ans % P + P) % P);
    	return 0;
    }
    
    
  • 相关阅读:
    【转】 矩阵构造方法
    CODEVS1187 Xor最大路径 (Trie树)
    POJ2001 Shortest Prefixes (Trie树)
    CODEVS1079 回家 (最短路)
    CODEVS2144 砝码称重2 (哈希表)
    CODEVS1380 没有上司的舞会 (树形DP)
    JAVA 多态和异常处理作业——动手动脑以及课后实验性问题
    再读大道之简第七章第八章
    JAVA 接口与继承作业——动手动脑以及课后实验性问题
    再读大道至简第六章
  • 原文地址:https://www.cnblogs.com/Mychael/p/8975630.html
Copyright © 2011-2022 走看看