zoukankan      html  css  js  c++  java
  • 多项式求逆

    我们记(deg(A))为多项式(A(x))的度,即为(A(x))的最高项系数 + 1

    对于多项式(A(x)),如果存在(B(x))满足(deg(B) le deg(A)),且

    [A(x)B(x) equiv 1 pmod {x^{n}} ]

    我们称(B(x))(A(x))在模(x^n)意义下的逆元,记作(A^{-1}(x))

    求解过程##

    考虑递归求解
    (n = 1)时,(A(x) equiv c pmod x),显然(A^{-1}(x))就是(c^{-1})

    倘若我们要计算

    [A(x)B(x) equiv 1 pmod {x^n} ]

    而已经计算出

    [A(x)B'(x) equiv 1 pmod {x^{lceil frac{n}{2} ceil}} ]

    我们要求的(B(x))当然也满足

    [A(x)B(x) equiv 1 pmod {x^{lceil frac{n}{2} ceil}} ]

    两式相减

    [A(x)(B(x) - B'(x)) equiv 0 pmod {x^{lceil frac{n}{2} ceil}} ]

    [B(x) - B'(x) equiv 0 pmod {x^{lceil frac{n}{2} ceil}} ]

    两边平方,由于对于平方后的多项式(C(x)),其系数(c_i = sumlimits_{j = 0}^{i} b_j*b'_{i - j}),必有一项小于(lceil frac{n}{2} ceil)而使(c_i = 0)
    所以平方后放到(mod x^{n})意义下依然成立

    [B^2(x) + B'^2(x) - 2B(x)B'(x) equiv 0 pmod {x^{n}} ]

    两边乘(A(x))

    [B(x) + A(x)B'^2(x) - 2B'(x) equiv 0 pmod {x^{n}} ]

    得到

    [B(x) equiv B'(x)(2 - A(x)B'(x)) pmod {x^{n}} ]

    可以使用(fft)优化成(O(nlogn))
    总时间复杂度(T(n) = T(lceil frac{n}{2} ceil) + O(nlogn) = O(nlogn))

    模板:洛谷P4238

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 400005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const int G = 3,P = 998244353;
    inline int qpow(int a,int b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    int a[maxn],b[maxn],c[maxn],R[maxn];
    void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P; a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    void inv(int deg,int* a,int* b){
    	if (deg == 1){b[0] = qpow(a[0],P - 2); return;}
    	inv((deg + 1) >> 1,a,b);
    	int L = 0,n = 1;
    	while (n < (deg << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = 0; i < deg; i++) c[i] = a[i];
    	for (int i = deg; i < n; i++) c[i] = 0;
    	NTT(c,n,1); NTT(b,n,1);
    	for (int i = 0; i < n; i++)
    		b[i] = 1ll * ((2ll - 1ll * c[i] * b[i] % P) + P) % P * b[i] % P;
    	NTT(b,n,-1);
    	for (int i = deg; i < n; i++) b[i] = 0;
    }
    int main(){
    	int n = read();
    	for (int i = 0; i < n; i++) a[i] = read();
    	inv(n,a,b);
    	for (int i = 0; i < n; i++) printf("%d ",b[i]);
    	return 0;
    }
    
    
  • 相关阅读:
    实现mypwd
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp9 Web安全基础
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp8 Web基础
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp7 网络欺诈防范
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp6 MSF基础应用
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp5 信息搜集与漏洞扫描
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp4 恶意代码分析
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp3 免杀原理与实践
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp1+ 逆向进阶
    2019-2020-2 20175310奚晨妍《网络对抗技术》Exp2 后门原理与实践
  • 原文地址:https://www.cnblogs.com/Mychael/p/9045143.html
Copyright © 2011-2022 走看看