zoukankan      html  css  js  c++  java
  • hdu5279 YJC plays Minecraft 【分治NTT】

    题目链接

    hdu5279

    题解

    给出若干个完全图,然后完全图之间首尾相连并成环,要求删边使得两点之间路径数不超过(1),求方案数

    容易想到各个完全图是独立的,每个完全图要删成一个森林,其实就是询问(n)个点有标号森林的个数
    (f[i])表示(i)个点有标号森林的个数
    枚举第一个点所在树大小,我们只需求出(n)个点有多少种树,由(purfer)序容易知道是(n^{n - 2})
    那么有

    [f[n] = sumlimits_{i = 1}^{n} {n - 1 choose i - 1}i^{i - 2}f[n - i] ]

    化简一下:

    [f[n] = (n - 1)!sumlimits_{i = 1}^{n}frac{i^{i - 2}}{(i - 1)!} imes frac{f[n - i]}{(n - i)!} ]

    分治(NTT)即可

    每个完全图的方案是(f[a[i]]),中间相连的(n)条边有(2^n)种方案,由乘法原理乘起来即可

    但是这样求出来的不是答案,会多算一类情况:
    每个完全图的(1)(a_i)相通且所有中介边存在
    所以我们还需要计算(g[i])表示(i)个点的森林,(1)(i)点在同一棵树内的方案数
    显然

    [g[n] = sumlimits_{i = 2}^{n} {n - 2 choose i - 2}i^{i - 2}f[n - i] ]

    化简得

    [g[n] = (n - 2)!sumlimits_{i = 2}^{n} frac{i^{i - 2}}{(i - 2)!} imes frac{f[n - i]}{(n - i)!} ]

    (NTT)即可

    最后答案减去(g[a[i]])的乘积即可
    复杂度(O(nlog^2n))

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 400005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const int G = 3,P = 998244353;
    int R[maxn];
    inline int qpow(int a,int b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    
    int f[maxn],g[maxn],fac[maxn],fv[maxn],p[maxn],N = 100005;
    int A[maxn],B[maxn];
    void solve(int l,int r){
    	if (l == r){
    		if (l > 0) f[l] = 1ll * f[l] * fac[l - 1] % P;
    		return;
    	}
    	int mid = l + r >> 1;
    	solve(l,mid);
    	int n,m,L;
    	m = mid - l + 1;
    	for (int i = 0; i < m; i++) A[i] = 1ll * f[l + i] * fv[l + i] % P;
    	m = r - l;
    	for (int i = 0; i < m; i++) B[i] = 1ll * p[i + 1] * fv[i] % P;
    	n = 1; L = 0; m = mid + r - (l << 1) - 1;
    	while (n <= m) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = mid - l + 1; i < n; i++) A[i] = 0;
    	for (int i = r - l; i < n; i++) B[i] = 0;
    	NTT(A,n,1); NTT(B,n,1);
    	for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;
    	NTT(A,n,-1);
    	for (int i = mid - l,j = mid + 1; j <= r; i++,j++){
    		f[j] = (f[j] + A[i]) % P;
    	}
    	solve(mid + 1,r);
    }
    int b[maxn];
    inline int C(int n,int m){
    	if (m > n) return 0;
    	return 1ll * fac[n] * fv[m] % P * fv[n - m] % P;
    }
    void work(){
    	fac[0] = p[0] = p[1] = 1;
    	for (int i = 1; i <= N + 2; i++)
    		fac[i] = 1ll * fac[i - 1] * i % P;
    	for (int i = 2; i <= N + 2; i++)
    		p[i] = qpow(i,i - 2);
    	fv[N + 2] = qpow(fac[N + 2],P - 2); fv[0] = 1;
    	for (int i = N + 1; i; i--)
    		fv[i] = 1ll * fv[i + 1] * (i + 1) % P;
    	f[0] = 1;
    	solve(0,N);
    	A[0] = A[1] = 0;
    	for (int i = 2; i <= N; i++) A[i] = 1ll * p[i] * fv[i - 2] % P;
    	for (int i = 0; i <= N; i++) B[i] = 1ll * f[i] * fv[i] % P;
    	int n = 1,L = 0;
    	while (n <= (N << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = N + 1; i < n; i++) A[i] = 0;
    	for (int i = N + 1; i < n; i++) B[i] = 0;
    	NTT(A,n,1); NTT(B,n,1);
    	for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;
    	NTT(A,n,-1);
    	for (int i = 2; i <= N; i++) g[i] = 1ll * A[i] * fac[i - 2] % P;
    	g[1] = 1;
    }
    int n,a[maxn],ans,ans2;
    int main(){
    	work();
    	//REP(i,100) printf("%d ",f[i]); puts("");
    	//REP(i,100) printf("%d ",g[i]); puts("");
    	int T = read();
    	while (T--){
    		n = read();
    		REP(i,n) a[i] = read();
    		ans = qpow(2,n);
    		REP(i,n) ans = 1ll * ans * f[a[i]] % P;
    		ans2 = 1;
    		REP(i,n) ans2 = 1ll * ans2 * g[a[i]] % P;
    		ans = ((ans - ans2) % P + P) % P;
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    nginx 与 lua 开发笔记
    使用openresty + lua 搭建api 网关(一)安装openresty ,并添加lua模块
    Java使用POI接口读写Excel文件方法
    React常用的库安装
    Android手机捉包
    ffmpeg压缩视频
    用 TypeScript 写 React & Redux
    yarn使用
    Angular 组件引入其他css不生效
    Webstrom技巧
  • 原文地址:https://www.cnblogs.com/Mychael/p/9172482.html
Copyright © 2011-2022 走看看