zoukankan      html  css  js  c++  java
  • 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】

    题目链接

    洛谷T30212

    题解

    式子很容易推出来,二项式定理展开后对于(k)的答案即可化简为如下:

    [k!(sumlimits_{i = 0}^{k} frac{sumlimits_{x = 1}^{n} a_x^{i}}{i!} centerdot frac{sumlimits_{x = 1}^{n} b_x^{k - i}}{(k - i)!}) ]

    是一个卷积的形式
    我们只需对所有(k)预处理出(sumlimits_{i = 1}^{n} a_i^{k})(b)也是类似的

    月赛时并不会,暴力预处理便滚粗了,,

    考虑泰勒展开,有这样一个式子:

    [ln(1 + x) = sumlimits_{i = 0}^{infty} (-1)^{i} frac{x^{i + 1}}{i + 1} ]

    我们令(x = ax)

    [ln(1 + ax) = sumlimits_{i = 0}^{infty} (-1)^{i} frac{a^{i + 1}}{i + 1}x^{i + 1} ]

    出现了我们想要的(a_i^{k})
    我们只需求出

    [sumlimits_{i = 1}^{n} ln(1 + a_ix) = ln(prodlimits_{i = 1}^{n} (1 + a_ix)) ]

    (x^k)对应的系数就是(frac{(-1)^{k - 1}sumlimits_{i = 1}^{n}a_i^{k}}{k})

    分治(NTT) + 多项式求(ln)即可
    复杂度(O(nlog^2n))

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 400005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const int G = 3,P = 998244353;
    int R[maxn];
    inline int qpow(int a,LL b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    int n,m,a[maxn],b[maxn],c[maxn],A[maxn],B[maxn],cv[maxn],N;
    int fac[maxn],fv[maxn],inv[maxn];
    void init(){
    	fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
    	for (int i = 2; i <= 100000; i++){
    		fac[i] = 1ll * fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = 1ll * fv[i - 1] * inv[i] % P;
    	}
    }
    int F[30][maxn],deg[maxn],cnt;
    void solve(int l,int r){
    	if (l == r){
    		deg[++cnt] = 1;
    		F[cnt][0] = 1; F[cnt][1] = c[l];
    		return;
    	}
    	int mid = l + r >> 1;
    	solve(l,mid); solve(mid + 1,r);
    	int n = 1,L = 0,a = cnt - 1,b = cnt,m = deg[a] + deg[b];
    	while (n <= m) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = deg[a] + 1; i < n; i++) F[a][i] = 0;
    	for (int i = deg[b] + 1; i < n; i++) F[b][i] = 0;
    	NTT(F[a],n,1); NTT(F[b],n,1);
    	for (int i = 0; i < n; i++) F[a][i] = 1ll * F[a][i] * F[b][i] % P;
    	NTT(F[a],n,-1);
    	cnt--;
    	deg[cnt] = m;
    	for (int i = m + 1; i < n; i++) F[cnt][i] = 0;
    }
    void Der(int* a,int n){
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i + 1] * (i + 1) % P;
    	a[n] = 0;
    }
    void Int(int* a,int n){
    	for (int i = n + 1; i; i--) a[i] = 1ll * a[i - 1] * inv[i] % P;
    	a[0] = 0;
    }
    void Inv(int* a,int* b,int deg){
    	if (deg == 1){b[0] = qpow(a[0],P - 2); return;}
    	Inv(a,b,(deg + 1) >> 1);
    	int n = 1,L = 0;
    	while (n < (deg << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = 0; i < deg; i++) c[i] = a[i];
    	for (int i = deg; i < n; i++) c[i] = 0;
    	NTT(c,n,1); NTT(b,n,1);
    	for (int i = 0; i < n; i++)
    		b[i] = 1ll * ((2ll - 1ll * b[i] * c[i] % P) % P + P) % P * b[i] % P;
    	NTT(b,n,-1);
    	for (int i = deg; i < n; i++) b[i] = 0;
    }
    void Getln(int* a,int* b,int deg){
    	Inv(a,cv,deg);
    	Der(a,deg);
    	int n = 1,L = 0;
    	while (n <= (deg << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = deg; i < n; i++) a[i] = 0;
    	NTT(a,n,1); NTT(cv,n,1);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * cv[i] % P;
    	NTT(a,n,-1);
    	for (int i = 0; i <= deg; i++) b[i] = a[i];
    	Int(b,deg);
    }
    int main(){
    	init();
    	n = read(); m = read();	int v = qpow(1ll * n * m % P,P - 2);
    	REP(i,n) a[i] = read();
    	REP(i,m) b[i] = read();
    	N = read();
    	REP(i,n) c[i] = a[i];
    	solve(1,n);
    	//REP(i,n) printf("%d ",F[1][i]); puts("");
    	for (int i = n + 1; i <= N; i++) F[1][i] = 0;
    	Getln(F[1],A,N);
    	for (int i = 1; i <= N; i++){
    		if (!(i & 1)) A[i] = P - A[i];
    		A[i] = 1ll * A[i] * i % P * fv[i] % P;
    	}
    	//REP(i,N) printf("%d ",A[i]); puts("");
    	A[0] = n;
    	cls(cv);
    	REP(i,m) c[i] = b[i]; cnt = 0;
    	solve(1,m);
    	for (int i = m + 1; i <= N; i++) F[1][i] = 0;
    	Getln(F[1],B,N);
    	for (int i = 1; i <= N; i++){
    		if (!(i & 1)) B[i] = P - B[i];
    		B[i] = 1ll * B[i] * i % P * fv[i] % P;
    	}
    	//REP(i,N) printf("%d ",B[i]); puts("");
    	B[0] = m;
    	int n = 1,L = 0;
    	while (n <= (N << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = N + 1; i < n; i++) A[i] = B[i] = 0;
    	NTT(A,n,1); NTT(B,n,1);
    	for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;
    	NTT(A,n,-1);
    	for (int i = 1; i <= N; i++)
    		printf("%lld
    ",1ll * A[i] * fac[i] % P * v % P);
    	return 0;
    }
    
    
  • 相关阅读:
    聊聊Java中的异常及处理
    mysql各个版本介绍
    三范式理解
    spring 自定义注解
    双亲委派机制
    架构师之路
    访问localhost报错404
    删除重复记录sql
    如何测试kafka集群能否正常工作?
    SQL14
  • 原文地址:https://www.cnblogs.com/Mychael/p/9188697.html
Copyright © 2011-2022 走看看