zoukankan      html  css  js  c++  java
  • BZOJ1367 [Baltic2004]sequence 【左偏树】

    题目链接

    BZOJ1367

    题解

    又是一道神题,,

    我们考虑一些简单的情况:
    我们先假设(b_i)单调不降,而不是递增
    对于递增序列({a_i}),显然答案({b_i})满足(b_i = a_i)
    对于递减序列({a_i}),显然答案({b_i})满足(b_i)(a_i)的中位数

    于是我们有了初步的想法:
    (a_i)分成若干个单调递减的段,每段的答案为其中位数
    然后顺次访问段
    如果两段的答案是递增的,显然这两段就没有影响,相互独立了,就保留答案
    如果相邻两段的答案是递减的,就合并这两段,重新寻找它们的中位数
    可以证明是对的

    对于单调递增的处理,我们只需令(A[i] = A[i] - i),即可转变为单调不下降
    维护中位数可以用对顶堆实现,由于涉及堆的合并,那就使用左偏树

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 1000005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int val[maxn],ls[maxn],rs[maxn],d[maxn],siz[maxn],rt[maxn],Rt[maxn];
    int merge(int a,int b){
    	if (!b) return a;
    	if (!a) return b;
    	if (val[b] < val[a]) swap(a,b);
    	rs[a] = merge(rs[a],b);
    	siz[a] = siz[ls[a]] + 1 + siz[rs[a]];
    	if (d[ls[a]] < d[rs[a]]) swap(ls[a],rs[a]);
    	d[a] = rs[a] ? d[rs[a]] + 1 : 0;
    	return a;
    }
    int Merge(int a,int b){
    	if (!b) return a;
    	if (!a) return b;
    	if (val[b] > val[a]) swap(a,b);
    	rs[a] = Merge(rs[a],b);
    	siz[a] = siz[ls[a]] + 1 + siz[rs[a]];
    	if (d[ls[a]] < d[rs[a]]) swap(ls[a],rs[a]);
    	d[a] = d[rs[a]] + 1;
    	return a;
    }
    int n,pos[maxn],len[maxn],K;
    LL A[maxn];
    void work(){
    	int tmp; d[0] = -1;
    	for (int i = 1; i <= n; i++){
    		pos[++K] = i; len[K] = 1; rt[i] = i; siz[rt[i]] = 1; val[i] = A[i];
    		while (K > 1 && val[rt[pos[K]]] < val[rt[pos[K - 1]]]){
    			K--;
    			rt[pos[K]] = merge(rt[pos[K]],rt[pos[K + 1]]);
    			Rt[pos[K]] = Merge(Rt[pos[K]],Rt[pos[K + 1]]);
    			len[K] += len[K + 1];
    			while (siz[rt[pos[K]]] > siz[Rt[pos[K]]]){
    				tmp = rt[pos[K]];
    				rt[pos[K]] = merge(ls[rt[pos[K]]],rs[rt[pos[K]]]);
    				ls[tmp] = rs[tmp] = 0; siz[tmp] = 1;
    				Rt[pos[K]] = Merge(Rt[pos[K]],tmp);
    			}
    			while (siz[rt[pos[K]]] < siz[Rt[pos[K]]]){
    				tmp = Rt[pos[K]];
    				Rt[pos[K]] = Merge(ls[Rt[pos[K]]],rs[Rt[pos[K]]]);
    				ls[tmp] = rs[tmp] = 0; siz[tmp] = 1;
    				rt[pos[K]] = merge(rt[pos[K]],tmp);
    			}
    		}
    		//printf("[%d,%d]  mid = %d
    ",i - len[K] + 1,i,val[rt[pos[K]]]);
    	}
    	LL ans = 0,v;
    	for (int i = 1,l = 1; i <= K; i++){
    		v = siz[rt[pos[i]]] > siz[Rt[pos[i]]] ? val[rt[pos[i]]] : val[Rt[pos[i]]];
    		//printf("[%d,%d]  v = %lld
    ",l,l + len[i] - 1,v);
    		for (int j = 0; j < len[i]; j++)
    			ans += abs(v - A[l + j]);
    		l += len[i];
    	}
    	printf("%lld
    ",ans);
    }
    int main(){
    	n = read();
    	REP(i,n) A[i] = read() - i;
    	//REP(i,n) printf("%lld ",A[i]); puts("");
    	work();
    	return 0;
    }
    
    
  • 相关阅读:
    SpringBoot相知
    SpringBoot初识
    Mybatis 3 配置 Log4j
    IdeaVim-常用操作
    [ZZ] 基于Matlab的标记分水岭分割算法
    [综] meanshift算法
    [ZZ] 麻省理工( MIT)大神解说数学体系
    [ZZ] UIUC同学Jia-Bin Huang收集的计算机视觉代码合集
    公务员 素养
    [zz]有哪些优秀的科学网站和科研软件推荐给研究生?
  • 原文地址:https://www.cnblogs.com/Mychael/p/9202443.html
Copyright © 2011-2022 走看看