zoukankan      html  css  js  c++  java
  • 多项式除法

    多项式除法解决这样一个问题:
    有一个(n)次多项式(A(x))和一个(m)次多项式(B(x)),你希望求得多项式(Q(x))(R(x)),使得

    [A(x) = Q(x)B(x) + R(x) ]

    其中(deg_Q le n - m)(deg_R < m)

    那个余数特别难处理,考虑如何去掉
    我们记(A^{R}(x) = x^nA(frac{1}{x}))表示系数翻转后的多项式
    那么对于

    [A(x) = Q(x)B(x) + R(x) ]

    我们写成

    [A(frac{1}{x}) = Q(frac{1}{x})B(frac{1}{x}) + R(frac{1}{x}) ]

    两边同乘(x^{n})

    [x^{n}A(frac{1}{x}) = x^{n - m}Q(frac{1}{x})x^{n}B(frac{1}{x}) + x^{n}R(frac{1}{x}) ]

    [A^{R}(x) = Q^{R}(x)B^{R}(x) + x^{n - m + 1}R^{R}(x) ]

    发现此时在模(x^{n - m + 1})意义下(R^{R}(x))就不存在了,而(Q(x))次的上界恰好就是(n - m + 1),所以在此模意义下我们求出的(Q^{R}(x))就是实际我们所需的(Q(x))的系数翻转后的多项式

    化为

    [Q^{R}(x) equiv A^{R}(x)(B^{R}(x))^{-1} pmod {x^{n - m + 1}} ]

    多项式求逆即可
    (Q^{R}(x))翻转之后得到(Q(x)),回代求出(R(x))
    复杂度(O(nlogn))

    模板题

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 400005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    const int G = 3,P = 998244353;
    inline int qpow(int a,int b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    int R[maxn];
    inline void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    int c[maxn];
    void Inv(int* a,int* b,int deg){
        if (deg == 1){b[0] = qpow(a[0],P - 2); return;}
        Inv(a,b,(deg + 1) >> 1);
        int L = 0,n = 1;
        while (n < (deg << 1)) n <<= 1,L++;
        for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
        for (int i = 0; i < deg; i++) c[i] = a[i];
        for (int i = deg; i < n; i++) c[i] = 0;
        NTT(c,n,1); NTT(b,n,1);
        for (int i = 0; i < n; i++)
            b[i] = 1ll * ((2ll - 1ll * c[i] * b[i] % P) + P) % P * b[i] % P;
        NTT(b,n,-1);
        for (int i = deg; i < n; i++) b[i] = 0;
    }
    int f[maxn],g[maxn],q[maxn],r[maxn],gv[maxn],N,M;
    void work(){
    	reverse(f,f + N + 1);
    	reverse(g,g + M + 1);
    	Inv(g,gv,N - M + 1);
    	
    	int n = 1,L = 0,E = N - M;
    	while (n <= (E << 1)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = 0; i <= E; i++) c[i] = f[i];
    	for (int i = E + 1; i < n; i++) c[i] = 0;
    	for (int i = E + 1; i < n; i++) gv[i] = 0;
    	NTT(c,n,1); NTT(gv,n,1);
    	for (int i = 0; i < n; i++) q[i] = 1ll * c[i] * gv[i] % P;
    	NTT(q,n,-1);
    	reverse(q,q + E + 1);
    	for (int i = E + 1; i < n; i++) q[i] = 0;
    	reverse(g,g + M + 1);
    	reverse(f,f + N + 1);
    	
    	n = 1,L = 0;
    	while (n <= N) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = 0; i <= E; i++) c[i] = q[i];
    	for (int i = E + 1; i < n; i++) c[i] = 0;
    	for (int i = M + 1; i < n; i++) g[i] = 0;
    	NTT(g,n,1); NTT(c,n,1);
    	for (int i = 0; i < n; i++) c[i] = 1ll * c[i] * g[i] % P;
    	NTT(c,n,-1);
    	for (int i = 0; i < M; i++) r[i] = ((f[i] - c[i]) % P + P) % P;
    	
    	for (int i = 0; i <= E; i++) printf("%d ",q[i]); puts("");
    	for (int i = 0; i < M; i++) printf("%d ",r[i]);
    }
    int main(){
    	N = read(); M = read();
    	for (int i = 0; i <= N; i++) f[i] = read();
    	for (int i = 0; i <= M; i++) g[i] = read();
    	work();
    	return 0;
    }
    
    
  • 相关阅读:
    SpringBoot获取配置文件,就这么简单。
    IDEA 插件推荐 —— 让你写出好代码的神器!
    太高效了!玩了这么久的Linux,居然不知道这7个终端快捷键!
    万字长文!一次性弄懂 Nginx 处理 HTTP 请求的 11 个阶段
    一个排查了大半天儿的问题,差点又让 MyBatis 背锅
    使用Flutter开发的抖音国际版
    一文回顾Redis五大对象(数据类型)
    Gradle系列之初识Gradle
    OpenJFX DJ 风格 Java 桌面音乐播放器
    【高并发】高并发秒杀系统架构解密,不是所有的秒杀都是秒杀!
  • 原文地址:https://www.cnblogs.com/Mychael/p/9216906.html
Copyright © 2011-2022 走看看