zoukankan      html  css  js  c++  java
  • BZOJ3738 [Ontak2013]Kapitał 【扩展Lucas】

    题目链接

    BZOJ3738

    题解

    复习
    同上
    但是为了消去因子(10),处理(2^k)的时候,乘回(2^{k_1})时,应同时计算(5^{k_2})
    如果(k_1 ge k_2),乘上(5^{k_2})的逆元
    如果(k_1 < k_2),乘上(5^{k_1})的逆元
    处理(5^k)的时候同理

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<iomanip>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define cls(s,v) memset(s,v,sizeof(s))
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cp pair<int,int>
    using namespace std;
    const int maxn = 2000005,maxm = 100005,INF = 0x3f3f3f3f;
    LL pr[2],pk[2],fac[2],P,k1,k2,now;
    inline LL qpow(LL a,LL b,LL p){
    	LL re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % p)
    		if (b & 1) re = 1ll * re * a % p;
    	return re;
    }
    inline void exgcd(LL a,LL b,LL&d ,LL& x,LL& y){
    	if (!b){d = a; x = 1; y = 0;}
    	else exgcd(b,a % b,d,y,x),y -= (a / b) * x;
    }
    inline LL inv(LL n,LL p){
    	LL d,x,y; exgcd(n,p,d,x,y);
    	return (x % p + p) % p;
    }
    inline LL Fac(LL n,LL P,LL p){
    	if (!n) return 1;
    	LL ans = 1;
    	if (n / P) ans = qpow(fac[now],n / P,P);
    	LL E = n % P;
    	for (LL i = 2; i <= E; i++)
    		if (i % p) ans = 1ll * ans * i % P;
    	return 1ll * ans * Fac(n / p,P,p) % P;
    }
    inline int C(LL n,LL m,int pk,int p){
    	now = (p == 5);
    	LL a = Fac(n,pk,p),b = Fac(m,pk,p),c = Fac(n - m,pk,p),ans;
    	ans = 1ll * a * inv(b,pk) % pk * inv(c,pk) % pk;
    	if (p == 2){
    		if (k1 >= k2)
    			ans = 1ll * ans * qpow(inv(5,pk),k2,pk) % pk * qpow(2,k1 - k2,pk) % pk;
    		else ans = 1ll * ans * qpow(inv(5,pk),k1,pk) % pk;
    	}
    	else {
    		if (k1 >= k2)
    			ans = 1ll * ans * qpow(inv(2,pk),k2,pk) % pk;
    		else ans = 1ll * ans * qpow(inv(2,pk),k1,pk) % pk * qpow(5,k2 - k1,pk) % pk;
    	}
    	return 1ll * ans * (P / pk) % P * inv(P / pk,pk) % P;
    }
    inline LL exlucas(LL n,LL m){
    	for (LL i = n; i; i /= 2) k1 += i / 2;
    	for (LL i = m; i; i /= 2) k1 -= i / 2;
    	for (LL i = n - m; i; i /= 2) k1 -= i / 2;
    	for (LL i = n; i; i /= 5) k2 += i / 5;
    	for (LL i = m; i; i /= 5) k2 -= i / 5;
    	for (LL i = n - m; i; i /= 5) k2 -= i / 5;
    	LL re = 0;
    	re = (re + C(n,m,pk[0],pr[0])) % P;
    	re = (re + C(n,m,pk[1],pr[1])) % P;
    	return re;
    }
    int main(){
    	LL N,M,K;
    	cin >> N >> M >> K;
    	pr[0] = 2; pr[1] = 5; pk[0] = pk[1] = P = 1;
    	REP(i,K) pk[0] *= 2,pk[1] *= 5,P *= 10;
    	fac[0] = 1; for (LL i = 2; i < pk[0]; i++) if (i % 2) fac[0] = 1ll * fac[0] * i % pk[0];
    	fac[1] = 1; for (LL i = 2; i < pk[1]; i++) if (i % 5) fac[1] = 1ll * fac[1] * i % pk[1];
    	cout << setfill('0') << setw(K) << exlucas(N + M,N) << endl;
    	return 0;
    }
    
    
  • 相关阅读:
    redhat7最小化安装后的简单配置
    weblogic线程优化
    weblogic运行自动挂掉,优化jvm解决
    weblogic抛出Platform MBeanServer异常
    rehat7/contos7 HA安装配置
    docker stats 命令源码分析
    cAdvisor源码分析
    转: django class base view 简单说明
    转:多用户、多工作负载、5000节点集群:Kubernetes 1.6都有哪些看点?
    第一篇随笔
  • 原文地址:https://www.cnblogs.com/Mychael/p/9291281.html
Copyright © 2011-2022 走看看