zoukankan      html  css  js  c++  java
  • 任意模数NTT

    任意模数(NTT)

    众所周知,为了满足单位根的性质,(NTT)需要质数模数,而且需要能写成(a2^{k} + 1)(2^k ge n)
    比较常用的有(998244353,1004535809,469762049),这三个原根都是(3)

    如果要任意模数怎么办?
    (n)次多项式在模(m)下乘积,最终系数一定不会大于(nm^2)
    所以我们找三个模数分别做(NTT)再合并一下就好辣

    但这样的合并结果会爆(long long)
    需要用高精吗?
    可以使用一些技巧
    我们要合并的是

    [left { egin{aligned} x equiv a_1 pmod {m_1} \ x equiv a_2 pmod {m_2} \ x equiv a_3 pmod {m_3} \ end{aligned} ight. ]

    我们先在(long long)范围内合并前两个

    [left { egin{aligned} x equiv A pmod M \ x equiv a_3 pmod {m_3} \ end{aligned} ight. ]

    由于最后结果模(M)(A),模(m_3)(a_3)
    设最后的答案是

    [ans = kM + A ]

    (k)需要满足

    [kM + A equiv a_3 pmod {m_3} ]

    所以(k)一定是在模(m_3)意义下求出的,为

    [k equiv (a_3 - A)M^{-1} pmod {m_3} ]

    求出(k)后就可以直接在原模数意义下求出

    [ans = kM + A ]

    在第一次合并的时候需要快速乘

    做三次(NTT)常数有够大的

    模板题

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<map>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define cls(s,v) memset(s,v,sizeof(s))
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cp pair<int,int>
    using namespace std;
    const int maxn = 400005,maxm = 100005,INF = 0x3f3f3f3f;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
    	return flag ? out : -out;
    }
    int pr[]={469762049,998244353,1004535809};
    int R[maxn];
    inline LL qpow(LL a,LL b,LL p){
    	LL re = 1; a %= p;
    	for (; b; b >>= 1,a = a * a % p)
    		if (b & 1) re = re * a % p;
    	return re;
    }
    struct FFT{
    	int G,P,A[maxn];
    	void NTT(int* a,int n,int f){
    		for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    		for (int i = 1; i < n; i <<= 1){
    			int gn = qpow(G,(P - 1) / (i << 1),P);
    			for (int j = 0; j < n; j += (i << 1)){
    				int g = 1,x,y;
    				for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    					x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    					a[j + k] = (x + y) % P,a[j + k + i] = (x + P - y) % P;
    				}
    			}
    		}
    		if (f == 1) return;
    		int nv = qpow(n,P - 2,P); reverse(a + 1,a + n);
    		for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    	}
    }fft[3];
    int F[maxn],G[maxn],B[maxn],deg1,deg2,deg,md;
    LL ans[maxn];
    LL inv(LL n,LL p){return qpow(n % p,p - 2,p);}
    LL mul(LL a,LL b,LL p){
    	LL re = 0;
    	for (; b; b >>= 1,a = (a + a) % p)
    		if (b & 1) re = (re + a) % p;
    	return re;
    }
    void CRT(){
    	deg = deg1 + deg2;
    	LL a,b,c,t,k,M = 1ll * pr[0] * pr[1];
    	LL inv1 = inv(pr[1],pr[0]),inv0 = inv(pr[0],pr[1]),inv3 = inv(M % pr[2],pr[2]);
    	for (int i = 0; i <= deg; i++){
    		a = fft[0].A[i],b = fft[1].A[i],c = fft[2].A[i];
    		t = (mul(a * pr[1] % M,inv1,M) + mul(b * pr[0] % M,inv0,M)) % M;
    		k = ((c - t % pr[2]) % pr[2] + pr[2]) % pr[2] * inv3 % pr[2];
    		ans[i] = ((k % md) * (M % md) % md + t % md) % md;
    	}
    }
    void conv(){
    	int n = 1,L = 0;
    	while (n <= (deg1 + deg2)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int u = 0; u <= 2; u++){
    		fft[u].G = 3; fft[u].P = pr[u];
    		for (int i = 0; i <= deg1; i++) fft[u].A[i] = F[i];
    		for (int i = 0; i <= deg2; i++) B[i] = G[i];
    		for (int i = deg2 + 1; i < n; i++) B[i] = 0;
    		fft[u].NTT(fft[u].A,n,1); fft[u].NTT(B,n,1);
    		for (int i = 0; i < n; i++) fft[u].A[i] = 1ll * fft[u].A[i] * B[i] % pr[u];
    		fft[u].NTT(fft[u].A,n,-1);
    	}
    }
    int main(){
    	deg1 = read(); deg2 = read(); md = read();
    	for (int i = 0; i <= deg1; i++) F[i] = read();
    	for (int i = 0; i <= deg2; i++) G[i] = read();
    	conv(); CRT();
    	for (int i = 0; i <= deg; i++) printf("%lld ",ans[i]);
    	return 0;
    }
    
    
  • 相关阅读:
    js中Frame框架的属性获取(1)
    c#中文件上传(1)
    表单验证Validform
    Mybatis语法笔记
    js的checkbox
    调用微信Js-SDK支付
    调用微信Js-SDK图片
    java后台上传到linux
    web服务器内层溢出
    SpringMVC
  • 原文地址:https://www.cnblogs.com/Mychael/p/9297652.html
Copyright © 2011-2022 走看看