Catenyms
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11214 | Accepted: 2908 |
Description
A catenym is a pair of words separated by a period such that the last letter of the first word is the same as the last letter of the second. For example, the following are catenyms:
A compound catenym is a sequence of three or more words separated by periods such that each adjacent pair of words forms a catenym. For example,
aloha.aloha.arachnid.dog.gopher.rat.tiger
Given a dictionary of lower case words, you are to find a compound catenym that contains each of the words exactly once.
dog.gopher
gopher.rat
rat.tiger
aloha.aloha
arachnid.dog
A compound catenym is a sequence of three or more words separated by periods such that each adjacent pair of words forms a catenym. For example,
aloha.aloha.arachnid.dog.gopher.rat.tiger
Given a dictionary of lower case words, you are to find a compound catenym that contains each of the words exactly once.
Input
The first line of standard input contains t, the number of test cases. Each test case begins with 3 <= n <= 1000 - the number of words in the dictionary. n distinct dictionary words follow; each word is a string of between 1 and 20 lowercase letters on a line by itself.
Output
For each test case, output a line giving the lexicographically least compound catenym that contains each dictionary word exactly once. Output "***" if there is no solution.
Sample Input
2 6 aloha arachnid dog gopher rat tiger 3 oak maple elm
Sample Output
aloha.arachnid.dog.gopher.rat.tiger ***
Source
省赛那道最小生成树的题模板套了很久一直都是错的,才感觉自己好像只是手里拿着一些自己熟悉图论的模板而已,实际上什么也不会,基础逃过不扎实。
大致题意:给定一些字符串,要求像成语接龙一般把所有字符串连接起来,如果存在多种情况,按字典序最小的那种输出。
题解:一个欧拉路的题,因为要求以字典序输出,所以得先对输入的字符串进行字典序排序排序(做到这题才知道 string 类型的可以直接排序,结果就是字典序,果然还是得多多学习)。接着 a,b,c 等字母为顶点以每个字符串为边,从首字母指向尾字母,(最开始以每个单词为顶点老是不行,在看了题解后才改过来)。建好图以后就是一个直接的欧拉回路问题了,分别先判断联通与否 以及是否能够构成欧拉图,然后便是路径输出了。
#include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<iostream> #include<vector> using namespace std; int n,vis[1005],len[1005],k,in[1005],out[1005],ans[1005],cnt; string s[1005]; struct node{ int u,m; }; vector<node> g[1005]; void euler(int x){ for(int i=0;i<g[x].size();i++){ int v=g[x][i].u; if(!vis[ g[x][i].m ]){ vis[ g[x][i].m ]=1; euler(v); cnt++; ans[cnt]=g[x][i].m; } } } int main(){ int t; scanf("%d",&t); while(t--){ int start=100; cin >> n; k=0; memset(vis,0,sizeof(vis)); memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); for(int i=1;i<=26;i++) g[i].clear(); for(int i=1;i<=n;i++){ cin >> s[i]; } sort(s+1,s+n+1); for(int i=1;i<=n;i++){ len[i]=s[i].size(); } for(int i=1;i<=n;i++){ node t; t.u=s[i][len[i]-1]-'a'+1; t.m=i; g[ s[i][0]-'a'+1 ].push_back( t ); out[ s[i][0]-'a'+1 ]++; in[s[i][len[i]-1]-'a'+1]++; start=min(start,s[i][0]-'a'+1); start=min(start,s[i][len[i]-1]-'a'+1); } int fin=0,fout=0,end=0,flag=0; for(int i=1;i<=26;i++){ if(in[i]+1==out[i]){ start=i; fin++; } else if(in[i]==out[i]+1){ fout++; } else if(in[i]!=out[i]) flag=1; } if(flag==1) { printf("*** "); continue; } else if( (fin==1&&fout==1) || (fin==0&&fout==0) ) { cnt=0; euler(start); if(cnt==n){ for(int i=cnt;i>=1;i--) { if(i==cnt) cout << s[ ans[i] ]; else cout << "." << s[ ans[i] ]; } printf(" "); } else { printf("*** "); continue; } } else { printf("*** "); continue; } } return 0; }