zoukankan      html  css  js  c++  java
  • FIVE Spark SQL 编程初级实践

    编程实现将 RDD 转换为 DataFrame
    将数据复制保存到 ubuntu 系统/usr/local/spark 下,命名为 employee.txt,实现从 RDD 转换得到 DataFrame,并按 id:1,name:Ella,age:36 的格式,打印出 DataFrame 的所有数据。请写出程序代码。(任选一种方法即可),目录为/usr/local/spark/mycode/rddtodf,在当前目录下新建一个目录
    mkdir -p src/main/scala ,然后在目录 /usr/local/spark/mycode/rddtodf/src/main/scala 下 新 建 一 个rddtodf.scala,复制下面代码;(下列两种方式任选其一)
    方法一:利用反射来推断包含特定类型对象的 RDD 的 schema,适用对已知数据结构的 RDD
    转换;
    import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
    import org.apache.spark.sql.Encoder
    import spark.implicits._
    object RDDtoDF {
     def main(args: Array[String]) {
    case class Employee(id:Long,name: String, age: Long)
    val employeeDF = 
    spark.sparkContext.textFile("file:///usr/local/spark/employee.txt").map(_.split(",")).map(at
    tributes => Employee(attributes(0).trim.toInt,attributes(1), attributes(2).trim.toInt)).toDF()
    employeeDF.createOrReplaceTempView("employee")
    val employeeRDD = spark.sql("select id,name,age from employee")
    employeeRDD.map(t => "id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show()
     } }
    

      

    方法二:使用编程接口,构造一个 schema 并将其应用在已知的 RDD 上。
    import org.apache.spark.sql.types._import org.apache.spark.sql.Encoder
    import org.apache.spark.sql.Row
    object RDDtoDF {
     def main(args: Array[String]) {
    val employeeRDD =
    spark.sparkContext.textFile("file:///usr/local/spark/employee.txt")
    val schemaString = "id name age"
    val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, 
    StringType, nullable = true))
    val schema = StructType(fields)
    val rowRDD = employeeRDD.map(_.split(",")).map(attributes => 
    Row(attributes(0).trim, attributes(1), attributes(2).trim))
    val employeeDF = spark.createDataFrame(rowRDD, schema)
    employeeDF.createOrReplaceTempView("employee")
    val results = spark.sql("SELECT id,name,age FROM employee")
    results.map(t => "id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show()
     } }
    

      

    在目录/usr/local/spark/mycode/rddtodf 目录下新建 simple.sbt,复制下面代码:
    name := "Simple Project"
    version := "1.0"
    scalaVersion := "2.11.8"
    libraryDependencies += "org.apache.spark" % "spark-core" % "2.1.0"
    

      

    在目录/usr/local/spark/mycode/rddtodf 下执行下面命令打包程序
    /usr/local/sbt/sbt package
    

      

    最后在目录/usr/local/spark/mycode/rddtodf 下执行下面命令提交程序
    /usr/local/spark/bin/spark-submit --class " RDDtoDF " 
    /usr/local/spark/mycode/rddtodf/target/scala-2.11/simple-project_2.11-1.0.jar
    

      

    在终端即可看到输出结果。
     
     
  • 相关阅读:
    图片局部放大插件jquery.jQZoom.js
    FastCGI for iis6不能限制程序池的CPU
    技术普及帖:你刚才在淘宝上买了一件东西
    转载 ListView动态加载数据模板
    转载 Drawable、Bitmap、byte[]之间的转换
    转载 一个ImageView 点击时是一张图片,放开时换另一张图片
    转载 java抽象类与接口的区别
    转载 Android AsyncTask
    转载 Android实现ListView异步加载图片
    转载 Android权限大全
  • 原文地址:https://www.cnblogs.com/NCLONG/p/12266727.html
Copyright © 2011-2022 走看看