zoukankan      html  css  js  c++  java
  • ubuntu之路——day16 只用python的numpy在底层检验神经网络的优化算法

    首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273

    开一个我的github传送门,可以看到代码。

    https://github.com/VVV-LHY/deeplearning.ai/tree/master/improveNeuralNetwork/optimalNN

    待分类的点集:

    普通的梯度下降法GradientDescent(带minibatch)的模型训练过程:

    动量梯度下降法(带minibatch):

    Adam梯度下降法(带minibatch):

    三种算法在训练集上的准确率:

    对比普通的梯度下降GD、动量梯度下降法momentum、Adam三种方法可知:

    1. GD和momentum的准确率accuracy都为0.797,Adam的准确率为0.94。这说明在相同的迭代次数即时间花费下,Adam的收敛速度最快,对算法的效率有明显提升。
    2. GD和momentum相对于Adam有明显的预热过程,即不会在刚开始突然加快梯度下降速度,而是会慢慢迭代。而Adam在第1000次迭代的时候就已经快要收敛。
    3. 通常来说momentum也具备很好的效果,但是本实验的点集很小且迭代次数不够多,所以无法体现momentum对普通梯度下降的优势。
    4. GD和momentnum的迭代震荡幅度要高于Adam,Adam的收敛范围更小更平滑。 
  • 相关阅读:
    Maven ==> 简介
    IDEA结合GIT的使用
    Shell ==> 基础
    Dubbo ==> 简介
    iptables防火墙
    文件系统对比
    supervisord部署
    inotify+rsync安装配置
    前端插件网址
    Nginx高级玩法
  • 原文地址:https://www.cnblogs.com/NWNU-LHY/p/11244357.html
Copyright © 2011-2022 走看看