zoukankan      html  css  js  c++  java
  • Rectangles

    Given two rectangles and the coordinates of two points on the diagonals of each rectangle,you have to calculate the area of the intersected part of two rectangles. its sides are parallel to OX and OY .

    Input
    Input The first line of input is 8 positive numbers which indicate the coordinates of four points that must be on each diagonal.The 8 numbers are x1,y1,x2,y2,x3,y3,x4,y4.That means the two points on the first rectangle are(x1,y1),(x2,y2);the other two points on the second rectangle are (x3,y3),(x4,y4).

    Output
    Output For each case output the area of their intersected part in a single line.accurate up to 2 decimal places.

    Sample Input
    1.00 1.00 3.00 3.00 2.00 2.00 4.00 4.00
    5.00 5.00 13.00 13.00 4.00 4.00 12.50 12.50

    Sample Output
    1.00
    56.25

    #include <iostream>
    #include <iomanip>
    using namespace std;
    double cc(double a,double b)
    {
    if(a<b) return a;
    else return b;
    }
    double bb(double a,double b)
    {
    if(a<b) return b;
    else return a;
    }
    int main()
    {
    double x1,x2,x3,x4;
    double y1,y2,y3,y4;
    double a,b,c,d,t;
    while(cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4)
    {
    if(x1>x2) {t=x1;x1=x2;x2=t;}
    if(y1>y2) {t=y1;y1=y2;y2=t;}
    if(x3>x4) {t=x3;x3=x4;x4=t;}
    if(y3>y4) {t=y3;y3=y4;y4=t;}
    a=bb(x1,x3);
    b=cc(x2,x4);
    c=bb(y1,y3);
    d=cc(y2,y4);
    cout<<setiosflags(ios::fixed)<<setprecision(2);
    cout<<((a>b||c>d)?0:(b-a)*(d-c))<<endl;
    }
    return 0;
    }

  • 相关阅读:
    三种方法
    渐渐明白
    出手的时候到了
    URL OpenDocument
    熟练使用IDT
    时间快到了
    还是这样
    接口的多态性
    接口(interface)的使用
    抽象类(abstract class)与抽象方法
  • 原文地址:https://www.cnblogs.com/NYNU-ACM/p/4658232.html
Copyright © 2011-2022 走看看