zoukankan      html  css  js  c++  java
  • 线程池源码探究

    1.线程池简介

    使用线程池,一般会使用JDK提供的几种封装类型,即:newFixedThreadPoolnewSingleThreadExecutornewCachedThreadPool等,这些线程池的定义在Executors类中,来看看相关的源码:

        public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>(),
                                          threadFactory);
        }
    
        public static ExecutorService newSingleThreadExecutor() {
            return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                                        0L, TimeUnit.MILLISECONDS,
                                        new LinkedBlockingQueue<Runnable>()));
        }
    
        public static ExecutorService newFixedThreadPool(int nThreads) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>());
        }
    

    这些方法内部都使用了ThreadPoolExecutor的构造方法,区别只是传入的参数不同。ThreadPoolExecutor有四个重载的构造方法,最终调用的是由7个参数的构造器,其源码如下:

        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            //参数校验
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    

    参数解释:

    • corePoolSize:核心池大小,默认情况下,线程池启动之后,并不会立即创建线程,而是要等到任务到来之后,才创建线程去执行任务(除非设置了allowCoreThreadTimeOut参数,该参数会在线程池启动之后立马创建核心池数量的线程)。随着任务的不断增加,现有线程无法满足要求,就会不断的创建新线程,直到线程数达到corePoolSize的值,后续新来的任务会放入阻塞队列;
    • maximumPoolSize: 最大池大小,当任务太多,阻塞队列满了之后,如果线程数量还没有超过该参数的值,就会继续创建新线程,直到线程数达到该参数规定的值,后续再来的任务会使用拒绝策略进行处理;
    • keepAliveTime: 如果线程数超过corePoolSize的值,那么多余的线程在空闲keepAliveTime时间后会被销毁;
    • unit: keepAliveTime参数的单位;
    • workQueue: 阻塞队列;
    • threadFactory: 线程工厂,创建线程时需要使用到该工厂;
    • handler: 拒绝策略。

    2.核心字段

    ThreadPoolExecutor的核心字段如下:

        //ctl低29位表示线程的数量,高3位表示线程池状态,因此当前线程池允许的最大线程数量是2^29-1
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        //固定值29
        private static final int COUNT_BITS = Integer.SIZE - 3;
        //线程最大容量
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        //线程池的运行时状态,负数表示正在运行,正数表示终止情况
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    

    3.线程池状态

    线程池的状态有5种,状态之间的转换关系如下图:

    初始情况下,线程池创建完毕后会处于RUNNING状态,可以正常的接受新任务;当调用shutdown()时,线程池变成SHUTDOWN状态,此时无法接受新任务,但是会继续执行阻塞队列中的任务;当调用shutdownNow()时,线程由RUNNING状态变成STOP状态,此时不能接受新任务,并且会中断正在执行的任务;当线程池中的线程数减少为0时,就会转成TIDYING状态;在TIDYING状态会自动调用terminated()使线程池转为TERMINATED状态。

    • shutdown()
      shutdown()方法的逻辑分别由5个不同的方法来实现,这里将这些方法整理在一起,如下:
        public void shutdown() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                //检查security manager是否允许调用方执行此方法
                checkShutdownAccess();
                //将线程池状态更新为SHUTDOWN
                advanceRunState(SHUTDOWN);
                //中断空闲线程
                interruptIdleWorkers();
                //这是一个空实现,允许子类进行重写
                onShutdown(); // hook for ScheduledThreadPoolExecutor
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
        }
    
        private void advanceRunState(int targetState) {
            for (;;) {
                int c = ctl.get();
                //如果线程池已经处在targetState及之后的状态则直接结束循环,否则使用CAS操作将线程池状态更新为targetState
                if (runStateAtLeast(c, targetState) ||
                    ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                    break;
            }
        }
    
        private void interruptIdleWorkers() {
            interruptIdleWorkers(false);
        }
    
        //onlyOne表示是否只终止一个空闲线程
        private void interruptIdleWorkers(boolean onlyOne) {
            final ReentrantLock mainLock = this.mainLock;
            //加可重入锁
            mainLock.lock();
            try {
                for (Worker w : workers) {
                    Thread t = w.thread;
                    //如果线程没有被中断,则尝试获取锁,获取成功后将线程中断
                    if (!t.isInterrupted() && w.tryLock()) {
                        try {
                            t.interrupt();
                        } catch (SecurityException ignore) {
                        } finally {
                            //释放锁
                            w.unlock();
                        }
                    }
                    if (onlyOne)
                        break;
                }
            } finally {
                mainLock.unlock();
            }
        }
    
        final void tryTerminate() {
            //自旋
            for (;;) {
                int c = ctl.get();
                //线程池还在运行,或者已经是TIDYING或TERMINATED状态,或者已经处在`SHUTDOWN`状态但阻塞队列不为空,这几种情况不再继续执行
                if (isRunning(c) ||
                    runStateAtLeast(c, TIDYING) ||
                    (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                    return;
                //线程数不为0时,终止一个空闲线程
                if (workerCountOf(c) != 0) { // Eligible to terminate
                    interruptIdleWorkers(ONLY_ONE);
                    return;
                }
    
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    //将线程池设置为DIDYING状态
                    if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                        //设置成功后,执行terminated()方法
                        try {
                            //这也是一个空实现,子类可以根据需要进行重写
                            terminated();
                        } finally {
                            //将线程池设置为TERMINATED状态
                            ctl.set(ctlOf(TERMINATED, 0));
                            termination.signalAll();
                        }
                        return;
                    }
                } finally {
                    mainLock.unlock();
                }
                // else retry on failed CAS
            }
        }
    
    • shutdownNow()
        public List<Runnable> shutdownNow() {
            List<Runnable> tasks;
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                //检查security manager是否允许调用方执行此方法
                checkShutdownAccess();
                //将线程池状态更新为STOP
                advanceRunState(STOP);
                //与shutdown的区别是,这里会中断所有线程,而不仅仅是空闲线程
                interruptWorkers();
                //将任务从workQueue中移除,转移到一个ArrayList中,此操作后,workQueue为空,已有的任务无法继承执行
                tasks = drainQueue();
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
            return tasks;
        }
        
        //中断所有线程
        private void interruptWorkers() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (Worker w : workers)
                    w.interruptIfStarted();
            } finally {
                mainLock.unlock();
            }
        }
    

    4.执行任务

    线程池通过execute()方法执行任务,其源码如下:

        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
    
            int c = ctl.get();
            //如果当前活跃线程小于核心池大小,就尝试创建新的线程
            if (workerCountOf(c) < corePoolSize) {
                //如果成功创建新线程并且启动成功,直接返回
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            //线程池处于运行状态,并且成功将任务加入阻塞队列时,会执行下面的代码
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                //如果重复检查时,线程池已经不是运行状态,则将刚添加的任务从阻塞队列中移除,并执行拒绝策略
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                //如果活跃线程为0,则创建一个非核心线程,并将firstTask设置为null
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            //如果添加非核心线程失败,则执行拒绝策略
            else if (!addWorker(command, false))
                reject(command);
        }
        
        //获取活跃的线程数
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        //获取线程池运行状态
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
    

    下图是execute()方法的执行逻辑:

    来看看addWorker()方法的实现:

        //core表示要创建的是否是核心线程,true表示创建核心线程,false表示创建非核心线程
        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                //获取线程池状态
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                //rs >= SHUTDOWN,表示线程池不再处于RUNNING状态
                //rs>=SHUTDOWN,说明已经调用了shutdown()或者shutdownNow()方法,在此条件满足的情况下,第二项条件等同于
                //rs!=SHUTDOWN || firstTask != null || workQueue.isEmpty(),满足这三个条件的任何一个都不会再添加新任务
                //rs!=SHUTDOWN,说明是STOP、TIDYING、TERMINATE这三种
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                //执行到这里说明:
                //① rs<SHUTDOWN,即线程池是运行状态
                //② rs=SHUTDOWN,farstTask=null, 并且阻塞队列不为空
                for (;;) {
                    int wc = workerCountOf(c);
                    //有三种情况会返回false:1)线程数达到最大值;2)当前创建核心线程,但是线程数已经达到核心池大小;
                    //3)当前创建非核心线程,并且线程数达到最大池大小
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    //如果使用CAS操作成功将ctl的值加1,则跳出最外层循环
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    //走到这里说明无法使用CAS更新ctl的值,说明此时发生了多线程竞争,需要重新查看线程池的状态
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                //创建新的Worker线程
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    //加重入锁
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            //如果线程t的start()方法已经被执行过,则抛出异常
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            //workers是个HashSet类型,只在重入锁代码中被访问
                            workers.add(w);
                            //更新当前活跃线程的最大值
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        //线程创建成功,则启动线程,内部会调用Worker类的run()方法
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                //成功创建新线程时,才会设置workerStarted=true,这里处理没有创建新线程的情况
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    

    addWorker()方法中用到了Worker类,这是ThreadPoolExecutor的内部类,对线程进行了包装,线程池创建或者启动的线程,实际上都是Worker类型的实例,其源码如下(省略了无关代码):

        private final class Worker extends AbstractQueuedSynchronizer implements Runnable
        {
    
            /** Thread this worker is running in.  Null if factory fails. */
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            //构造器
            Worker(Runnable firstTask) {
                setState(-1); 
                this.firstTask = firstTask;
                //注意,这里是将Worker实例传入线程工厂进行构造,因此在调用线程的start()方法时,内部会调用Worker类的run()方法
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    

    当启动Worker线程时,会通过Thread类的start()方法调用Worker类的runWorker()方法,每一个启动的线程都会在该方法的while循环中不断获取任务去执行,该方法源码如下:

        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                //如果能够成功拿到任务,则执行下面的代码块,如果getTask()方法返回null,当前线程就会执行退出逻辑
                while (task != null || (task = getTask()) != null) {
                    //如果能将state字段设置为1,表示成功拿到锁,就接着向下执行,否则线程会加入等待队列,不再继续执行
                    //注意这里是在成功拿到新任务之后才会加锁,结合shutdown()方法的逻辑
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    //如果线程池正在关闭,需要中断当前线程
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        //前置钩子
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            //执行任务
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            //后置钩子
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        //释放锁
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    

    beforeExecute()afterExecute()protected类型,并且默认是空实现,很明显是留给子类去实现钩子逻辑。上面的代码使用getTask()从阻塞队列中取任务,其实现如下:

        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                //线程池正在关闭,或者阻塞队列空了,就减少线程数,并返回null
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                int wc = workerCountOf(c);
    
                // Are workers subject to culling?
                //在设置了allowCoreThreadTimeOut参数后,超过给定的时间,会将空闲的核心线程清理掉
                //或者线程数量超过了核心池数量,会在一定时间后清理掉多余的线程
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
                //1)线程数量超过最大池数量,或者超时; 2)线程数大于1,或者阻塞队列为空; 这两个条件都成立时,就将ctl值减1
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
    
                try {
                    //如果设置了超时状态,则使用poll方法取任务,超过keepAliveTime还没有任务到来就返回true
                    //否则使用take取任务,在阻塞队列为空时会一直等待
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    //线程有可能在等待新任务的到来而阻塞,但是在等待的过程中调用shutdownNow()关闭线程时,线程会抛出中断异常,在这里被捕获
                    timedOut = false;
                }
            }
        }
    

    现在来整理一下runWorker()方法的思路:每一个新创建的线程都会在runWorker()方法里通过while循环不断地从阻塞队列中获取任务,取到任务之后就执行任务的run()方法,取不到任务就会一直阻塞,或者等待一定的时间之后,空闲线程超时需要回收,就会执行processWorkerExit()方法。

    5.线程池是如何关闭的

    • shutdown()
      在介绍shutdown()方法时有一个疑问,该方法只会中断空闲线程,但是非空闲的线程不会被中断,即使该线程被阻塞,因此该方法有可能无法关闭那些一直处在等待状态的非空闲线程,这一点在使用时需要注意。在runWorker()方法中,while循环会在成功拿到任务后才会加锁,因此那些由于阻塞队列为空拿不到任务而阻塞的线程也会被shutdown()方法中断
    while (task != null || (task = getTask()) != null) {
        //如果能将state字段设置为1,表示成功拿到锁,就接着向下执行,否则线程会加入等待队列,不再继续执行
        //注意这里是在成功拿到新任务之后才会加锁,结合shutdown()方法的逻辑
        w.lock();
        //忽略其他代码
    }
    
    • shutdownNow()
      shutdownNow()会中断所有的存活线程,不论这些线程是否空闲,因此可能会导致任务在执行的过程中抛出异常,这点需要注意。

    不论是调用哪个方法来关闭线程池,都可能会遇到线程陷入类似于synchronized导致的阻塞状态,处在这种状态的线程无法响应中断,因此这些线程以及其他还没有结束的线程的退出要由getTask()方法来决定。getTask()方法的自旋代码会首先检查线程池的状态,如下:

        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }
    

    在调用shutdownNow()方法关闭线程池后,rs >= STOP逻辑成立,直接返回null,而shutdown()方法会继续执行阻塞队列中的任务,直到workQueue.isEmpty()条件为真,getTask()返回null导致线程一个个结束,不论是哪种情况,最终线程池中的线程数量都会变成0。

  • 相关阅读:
    论文阅读 | Spatial Transformer Networks
    Latex的各种帽子
    SiamFC网络影响
    Faster RCNN Tensorflow在测试时得到的result.txt文件
    ubuntu16.04使用docker部署TFserving之安装docker
    ubuntu系统使用Faster RCNN训练自己的数据集
    pandas基础1数据结构介绍
    numpy基础4线性代数等
    numpy基础3通用函数等
    numpy基础2索引和切片
  • 原文地址:https://www.cnblogs.com/NaLanZiYi-LinEr/p/12714607.html
Copyright © 2011-2022 走看看