Description
有 (n) 头牛,每头牛可以为 ( ext{A}) 牛也可以为 ( ext{B}) 牛。现在给这些牛排队,要求相邻两头 ( ext{A}) 牛之间至少间隔 (k) 头 ( ext{B}) 牛,求方案数,对大质数取模。
(0leq k<nleq 100000)
Solution
考虑枚举有几头 ( ext{A}) 牛,设为 (i)。
( ext{B}) 牛数为 (n-i) 。由垫球法以及隔板法,可知当前情况下方案为
[{n-i-(i-1) imes k+i}choose i]
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 200000+5, yzh = 5000011;
int fac[N], ifac[N], n, k, ans = 1;
int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }
int main() {
scanf("%d%d", &n, &k);
fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
for (int i = 2; i <= (n<<1); i++)
fac[i] = 1ll*i*fac[i-1]%yzh;
for (int i = 2; i <= (n<<1); i++)
ifac[i] = -1ll*yzh/i*ifac[yzh%i]%yzh;
for (int i = 2; i <= (n<<1); i++)
ifac[i] = 1ll*ifac[i]*ifac[i-1]%yzh;
for (int i = 1; i <= n && n-i-(i-1)*k >= 0; i++)
(ans += C(n-i-(i-1)*k+i, i)) %= yzh;
printf("%d
", (ans+yzh)%yzh);
return 0;
}