zoukankan      html  css  js  c++  java
  • [NOI 2010]超级钢琴

    Description

    小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙 的音乐。 这架超级钢琴可以弹奏出n个音符,编号为1至n。第i个音符的美妙度为Ai,其中Ai可正可负。 一个“超级和弦”由若干个编号连续的音符组成,包含的音符个数不少于L且不多于R。我们定义超级和弦的美妙度为其包含的所有音符的美妙度之和。两个超级和 弦被认为是相同的,当且仅当这两个超级和弦所包含的音符集合是相同的。 小Z决定创作一首由k个超级和弦组成的乐曲,为了使得乐曲更加动听,小Z要求该乐曲由k个不同的超级和弦组成。我们定义一首乐曲的美妙度为其所包含的所有 超级和弦的美妙度之和。小Z想知道他能够创作出来的乐曲美妙度最大值是多少。

    Input

    第一行包含四个正整数n, k, L, R。其中n为音符的个数,k为乐曲所包含的超级和弦个数,L和R分别是超级和弦所包含音符个数的下限和上限。 接下来n行,每行包含一个整数Ai,表示按编号从小到大每个音符的美妙度。

    Output

    只有一个整数,表示乐曲美妙度的最大值。

    Sample Input

    4 3 2 3

    3

    2

    -6

    8

    Sample Output

    11

    Hint

    共有5种不同的超级和弦:音符1 ~ 2,美妙度为3 + 2 = 5
    音符2 ~ 3,美妙度为2 + (-6) = -4
    音符3 ~ 4,美妙度为(-6) + 8 = 2
    音符1 ~ 3,美妙度为3 + 2 + (-6) = -1
    音符2 ~ 4,美妙度为2 + (-6) + 8 = 4
    最优方案为:乐曲由和弦1,和弦3,和弦5组成,美妙度为5 + 2 + 4 = 11。

    n,k<=500,000

    题目大意

     求长度在[L,R]之间的最大的K个子序列的和

    题解

    考虑每个左端点$i$,合法的区间的右端点会在$[i+L,i+R]$内。

    不妨枚举所有左端点,找到以其为左端点,满足题意的最大子序列。

    用贪心的思想,显然这些序列中最大的一定是满足题意的,统计后将该序列删除。

    但若删除,就意味着以i为左端的序列都被排除,显然会流失掉一些有用的值。

    原来的区间$[i+L,i+R]$,假设在$maxi$处取得最大值,我们不妨将其裂解成两个区间$[i+L,maxi-1]$,$[maxi+1,i+R]$并分别找出在这两个小区间内的最大值,将他们加入待选序列中。

    显然维护就直接用堆,堆中记录一个5元组$(v,i,l,r,w)$分别表示该子序列的值$v$,左端点的位置$i$,右端点的区间$[l,r]$和去最值的右端点的位置$w$,以$v$为关键字,建大根堆。

    最后一个问题就是查找了,我们不妨预处理出前缀和。已知$i~j$的序列的值为$sum[j]-sum[i-1]$,既然左端点固定,那么只要找右端点处的$sum$最大值即可。用$RMQ$实现查找区间最大值。

     

     1 #include<map>
     2 #include<cmath>
     3 #include<ctime>
     4 #include<queue>
     5 #include<stack>
     6 #include<cstdio>
     7 #include<string>
     8 #include<vector>
     9 #include<cstring>
    10 #include<cstdlib>
    11 #include<iostream>
    12 #include<algorithm>
    13 #define LL long long
    14 #define RE register
    15 #define IL inline
    16  using namespace std;
    17 const int N=500000;
    18 
    19 IL int Max(int a,int b){return a>b ? a:b;}
    20 IL int Min(int a,int b){return a<b ? a:b;}
    21 
    22 struct node
    23 {
    24     int v,i,l,r,w;
    25 
    26 }t,tmp;
    27 bool operator < (const node &a,const node& b)//重载,建立大根堆
    28 {
    29     return a.v<b.v;
    30 }
    31 priority_queue<node>Q;
    32 
    33 int n,k,l,r,op;
    34 LL ans;
    35 int f[N+5][20],where[N+5][20];
    36 
    37 int maxn,maxi;
    38 IL void RMQ(int l,int r)//查询最值
    39 {
    40     int opt=log2(r-l+1);
    41     if (f[l][opt]>=f[r-(1<<opt)+1][opt]) maxn=f[l][opt],maxi=where[l][opt];
    42     else maxn=f[r-(1<<opt)+1][opt],maxi=where[r-(1<<opt)+1][opt];
    43 }
    44 
    45 int main()
    46 {
    47     memset(f,128,sizeof(f));
    48     f[0][0]=0;
    49     scanf("%d%d%d%d",&n,&k,&l,&r);
    50     op=log2(n);
    51     for (int i=1;i<=n;i++)
    52     {
    53         scanf("%d",&f[i][0]);
    54         where[i][0]=i;
    55         f[i][0]+=f[i-1][0];
    56     }
    57     for (int t=1;t<=op;t++)
    58         for (int i=1;i<=n;i++) if (i+(1<<(t-1))-1>n) break;
    59         else//倍增,where记录取最值的位置
    60         {
    61             if (f[i][t-1]>=f[i+(1<<(t-1))][t-1]) f[i][t]=f[i][t-1],where[i][t]=where[i][t-1];
    62             else f[i][t]=f[i+(1<<(t-1))][t-1],where[i][t]=where[i+(1<<(t-1))][t-1];
    63         }
    64     for (int i=1;i<=n-l+1;i++)
    65     {
    66         RMQ(i+l-1,i+Min(r-1,n-i));
    67         t.v=maxn-f[i-1][0],t.i=i,t.l=i+l-1,t.r=i+Min(r-1,n-i),t.w=maxi;
    68         Q.push(t);
    69     }
    70     while (k--)
    71     {
    72         t=Q.top();
    73         Q.pop();
    74         ans+=t.v;
    75         if (t.w>t.l)//要判断裂解的区间是否合法
    76         {
    77             RMQ(t.l,t.w-1);
    78             tmp.v=maxn-f[t.i-1][0],tmp.i=t.i,tmp.l=t.l,tmp.r=t.w-1,tmp.w=maxi;
    79             Q.push(tmp);
    80         }
    81         if (t.w<t.r)
    82         {
    83             RMQ(t.w+1,t.r);
    84             tmp.v=maxn-f[t.i-1][0],tmp.i=t.i,tmp.l=t.w+1,tmp.r=t.r,tmp.w=maxi;
    85             Q.push(tmp);
    86         }
    87     }
    88     printf("%lld
    ",ans);
    89     return 0;
    90 }

     

    博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/NaVi-Awson/,否则你会终生找不到妹子!!!
  • 相关阅读:
    Java中间件:淘宝网系统高性能利器(转)
    淘宝的数据库拆分(TDDL)(转)
    java web几种开发模式(转)
    C++模板【转】
    set[c++]
    C# jsonhelper
    Vector[C++]
    list[C++]
    map[C++]
    C[泊车管理系统]
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/7242846.html
Copyright © 2011-2022 走看看