Description
现在有一个圆圈,顺时针标号分别从 0 到 n-1,每次等概率顺时针走一步或者逆时针走一步,即如果你在 i 号点,你有 1/2 概率走到((i-1)mod n)号点,1/2 概率走到((i+1)mod n)号点。问从 0 号点走到 x 号点的期望步数。
Input
第一行包含一个整数 T,表示数据的组数。
接下来有 T 行,每行包含两个整数 n, x。
T<=10, 0<=x<n<=300;,a2⋯an 和 bbb,代表一组方程。
Output
对于每组数据,输出一行,包含一个四位小数表示答案。
Sample Input
3
3 2
5 4
10 5
Sample Output
2.0000
4.0000
25.0000
HINT
对于 30% 的数据,n<=20
对于 50% 的数据,n<=100
对于 70% 的数据,n<=200
对于 100%的数据,n<=300
题解
高斯消元,$n$个方程,$n$个未知量, 设$E[ p ]$ 为从$p$节点走到$x$节点还需要走的步数的期望数。那么$E [ x ] = 0$;
对于每个节点都有 $E[p]=0.5*E[p-1]+0.5*E[p+1]+1$, 即 $-0.5*E[p-1]+E[p]-0.5*E[p+1]=1$。
模板套上一题的就好了。
1 //It is made by Awson on 2017.10.10 2 #include <set> 3 #include <map> 4 #include <cmath> 5 #include <ctime> 6 #include <cmath> 7 #include <stack> 8 #include <queue> 9 #include <vector> 10 #include <string> 11 #include <cstdio> 12 #include <cstdlib> 13 #include <cstring> 14 #include <iostream> 15 #include <algorithm> 16 #define LL long long 17 #define Min(a, b) ((a) < (b) ? (a) : (b)) 18 #define Max(a, b) ((a) > (b) ? (a) : (b)) 19 #define sqr(x) ((x)*(x)) 20 using namespace std; 21 const int N = 300; 22 23 int n, d; 24 double a[N+5][N+5]; 25 26 void Gauss() { 27 for (int line = 1; line <= n; line++) { 28 int Max_line = line; 29 for (int i = line+1; i <= n; i++) 30 if (fabs(a[i][line]) > fabs(a[Max_line][line])) 31 Max_line = i; 32 if (Max_line != line) swap(a[line], a[Max_line]); 33 if (a[line][line] == 0) { 34 printf("No Solution "); 35 return; 36 } 37 for (int i = line+1; i <= n; i++) { 38 double tmp = a[i][line]/a[line][line]; 39 for (int j = line; j <= n+1; j++) 40 a[i][j] -= a[line][j]*tmp; 41 } 42 } 43 for (int i = n; i >= 1; i--) { 44 for (int j = i+1; j <= n; j++) 45 a[i][n+1] -= a[j][n+1]*a[i][j]; 46 a[i][n+1] /= a[i][i]; 47 } 48 printf("%.4lf ", a[1][n+1]); 49 } 50 void work() { 51 scanf("%d%d", &n, &d); 52 memset(a, 0, sizeof(a)); 53 for (int i = 0; i < n ;i++) { 54 if (i == d) { 55 a[i+1][i+1] = 1; 56 a[i+1][n+1] = 0; 57 }else { 58 a[i+1][i+1] = 1; 59 a[i+1][(i-1+n)%n+1] = -0.5; 60 a[i+1][(i+1)%n+1] = -0.5; 61 a[i+1][n+1] = 1; 62 } 63 } 64 Gauss(); 65 } 66 int main() { 67 int t; scanf("%d", &t); 68 while (t--) work(); 69 return 0; 70 }