zoukankan      html  css  js  c++  java
  • [POJ 3728]The merchant

    Description

    There are N cities in a country, and there is one and only one simple path between each pair of cities. A merchant has chosen some paths and wants to earn as much money as possible in each path. When he move along a path, he can choose one city to buy some goods and sell them in a city after it. The goods in all cities are the same but the prices are different. Now your task is to calculate the maximum possible profit on each path.

    Input

    The first line contains N, the number of cities.
    Each of the next N lines contains wi the goods' price in each city.
    Each of the next N-1 lines contains labels of two cities, describing a road between the two cities.
    The next line contains Q, the number of paths.
    Each of the next Q lines contains labels of two cities, describing a path. The cities are numbered from 1 to N.

    1 ≤ NwiQ ≤ 50000 

    Output

    The output contains Q lines, each contains the maximum profit of the corresponding path. If no positive profit can be earned, output 0 instead.

    Sample Input

    4
    1 
    5 
    3 
    2
    1 3
    3 2
    3 4
    9
    1 2
    1 3
    1 4
    2 3
    2 1
    2 4
    3 1
    3 2
    3 4

    Sample Output

    4
    2
    2
    0
    0
    0
    0
    2
    0

    题解

    题解:因为没有修改,所以我们可以使用树上倍增来解决,
    设 $fa[i][j]$表示点 $i$ 的第 $2^j$ 个祖先
    $ma[i][j]$表示点 $i$ 到点 $fa[i][j]$的最大值。
    $mi[i][j]$表示点 $i$ 到点 $fa[i][j]$的最小值。
    $zma[i][j]$表示点 $i$ 到点 $fa[i][j]$的最大获利。
    $fma[i][j]$表示点 $fa[i][j]$到点 $i$ 的最大获利。
    然后我们可以预处理出这四个数组。
    即:

    1 ma[x][i]=max(ma[fa[x][i-1]][i-1],ma[x][i-1]);
    2 mi[x][i]=min(mi[fa[x][i-1]][i-1],mi[x][i-1]);
    3 zma[x][i]=max(max(zma[fa[x][i-1]][i-1],zma[x][i-1]),ma[fa[x][i-1]][i-1]-mi[x][i-1]);
    4 fma[x][i]=max(max(fma[fa[x][i-1]][i-1],fma[x][i-1]),ma[x][i-1]-mi[fa[x][i-1]][i-1]);

    在走向最近公共祖先的路径上记录一下历史最小值,在远离最近公共祖先的路径上记录一下历史最大值(在途中和最大获利比较)。最后答案再和历史最大值-历史最小值比较一下即可。

      1 //It is made by Awson on 2017.10.13
      2 #include <set>
      3 #include <map>
      4 #include <cmath>
      5 #include <ctime>
      6 #include <stack>
      7 #include <queue>
      8 #include <string>
      9 #include <cstdio>
     10 #include <vector>
     11 #include <cstring>
     12 #include <cstdlib>
     13 #include <iostream>
     14 #include <algorithm>
     15 #define LL long long
     16 #define Min(a, b) ((a) < (b) ? (a) : (b))
     17 #define Max(a, b) ((a) > (b) ? (a) : (b))
     18 using namespace std;
     19 const int N = 100000;
     20 const int INF = 1e9;
     21 
     22 int n, m, u, v, lim;
     23 struct tt {
     24   int to, next;
     25 }edge[(N<<1)+5];
     26 int path[N+5], top;
     27 int cost[N+5];
     28 int dep[N+5], fa[N+5][20], maxn[N+5][20], minn[N+5][20], up[N+5][20], down[N+5][20];
     29 
     30 void add(int u, int v) {
     31   edge[++top].to = v;
     32   edge[top].next = path[u];
     33   path[u] = top;
     34 }
     35 void dfs(int u, int depth) {
     36   dep[u] = depth;
     37   for (int i = path[u]; i; i = edge[i].next)
     38     if (dep[edge[i].to] == 0) {
     39       maxn[edge[i].to][0] = Max(cost[edge[i].to], cost[u]);
     40       minn[edge[i].to][0] = Min(cost[edge[i].to], cost[u]);
     41       up[edge[i].to][0] = Max(0, cost[u]-cost[edge[i].to]);
     42       down[edge[i].to][0] = Max(0, cost[edge[i].to]-cost[u]);
     43       fa[edge[i].to][0] = u;
     44       dfs(edge[i].to, depth+1);
     45     }
     46 }
     47 void ST() {
     48   for (int t = 1; t <= lim; t++)
     49     for (int i = 1; i <= n; i++) {
     50       int v = fa[i][t-1];
     51       fa[i][t] = fa[v][t-1];
     52       maxn[i][t] = Max(maxn[i][t-1], maxn[v][t-1]);
     53       minn[i][t] = Min(minn[i][t-1], minn[v][t-1]);
     54       up[i][t] = Max(up[i][t-1], up[v][t-1]), up[i][t] = Max(up[i][t], maxn[v][t-1]-minn[i][t-1]);
     55       down[i][t] = Max(down[i][t-1], down[v][t-1]), down[i][t] = Max(down[i][t], maxn[i][t-1]-minn[v][t-1]);
     56     }
     57 }
     58 int get_lca(int u, int v) {
     59   if (dep[u] < dep[v]) swap(u, v);
     60   for (int i = lim; i >= 0; i--)
     61     if (dep[fa[u][i]] >= dep[v])
     62       u = fa[u][i];
     63   if (u != v) {
     64     for (int i = lim; i >= 0; i--)
     65       if (fa[u][i] != fa[v][i])
     66     u = fa[u][i], v = fa[v][i];
     67     u = fa[u][0], v = fa[v][0];
     68   }
     69   return u;
     70 }
     71 int get_ans(int u, int v) {
     72   int lca = get_lca(u, v);
     73   int ans = 0, large = -INF, small = INF;
     74   for (int i = lim; i >= 0; i--)
     75     if (dep[fa[u][i]] >= dep[lca]) {
     76       ans = Max(ans, up[u][i]);
     77       ans = Max(ans, maxn[u][i]-small);
     78       small = Min(small, minn[u][i]);
     79       u = fa[u][i];
     80     }
     81   for (int i = lim; i >= 0; i--)
     82     if (dep[fa[v][i]] >= dep[lca]) {
     83       ans = Max(ans, down[v][i]);
     84       ans = Max(ans, large-minn[v][i]);
     85       large = Max(large, maxn[v][i]);
     86       v = fa[v][i];
     87     }
     88   return Max(ans, large-small);
     89 }
     90 
     91 void work() {
     92   scanf("%d", &n); lim = log(n*1.)/log(2*1.);
     93   for (int i = 1; i <= n; i++) scanf("%d", &cost[i]);
     94   for (int i = 1; i < n; i++) {
     95     scanf("%d%d", &u, &v);
     96     add(u, v), add(v, u);
     97   }
     98   dfs(1, 1); ST();
     99   scanf("%d", &m);
    100   while (m--) {
    101     scanf("%d%d", &u, &v);
    102     printf("%d
    ", get_ans(u, v));
    103   }
    104 }
    105 int main() {
    106   work();
    107   return 0;
    108 }
  • 相关阅读:
    推荐一个博客,或许给技术流的自己一些启示
    Boost多线程-替换MFC线程
    Python:Matplotlib 画曲线和柱状图(Code)
    AI:机器人与关键技术--总是被科普
    OnLineML一:关于Jubatus 的简介...
    使用PCL::GPU::遇到问题
    dll文件:关于MFC程序不能定位输入点
    实践:使用FLANN.LSH进行检索
    模式识别两种方法:知识和数据
    几个方便编程的C++特性
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/7663586.html
Copyright © 2011-2022 走看看