zoukankan      html  css  js  c++  java
  • [ZJOI 2014]力

    Description

    给出n个数qi,给出Fj的定义如下:
    $$F_j = sum_{i<j}frac{q_i q_j}{(i-j)^2 }-sum_{i>j}frac{q_i q_j}{(i-j)^2 }$$
    令Ei=Fi/qi,求Ei.

    Input

    第一行一个整数n。
    接下来n行每行输入一个数,第i行表示qi。
    n≤100000,0<qi<1000000000

    Output

     n行,第i行输出Ei。与标准答案误差不超过1e-2即可。

    Sample Input

    5
    4006373.885184
    15375036.435759
    1717456.469144
    8514941.004912
    1410681.345880

    Sample Output

    -16838672.693
    3439.793
    7509018.566
    4595686.886
    10903040.872

    题解

    约掉 $q_i$ $$E_j = sum_{i<j}frac{q_j}{(i-j)^2 }-sum_{i>j}frac{q_j}{(i-j)^2 }$$

    我们拿出 $A_i=sumlimits_{i<j}frac{q_j}{(i-j)^2 }$ 讨论。

    构造第一个多项式系数依次为 $q_i,iin[0,n)$ ,第二个多项式系数 $egin{cases}0 &i=0\ frac{1}{i^2} &iin[1,n)end{cases}$

    卷积之后第 $i$ 项就是所求的 $A_i$ 。之后的类似,对于 $A'_i=sumlimits_{i>j}frac{q_j}{(i-j)^2 }$ 只要把第一个多项式翻转,卷积后第 $n-1-i$ 项就是所求的 $A'_i$ 。

     1 //It is made by Awson on 2018.1.28
     2 #include <set>
     3 #include <map>
     4 #include <cmath>
     5 #include <ctime>
     6 #include <queue>
     7 #include <stack>
     8 #include <cstdio>
     9 #include <string>
    10 #include <vector>
    11 #include <complex>
    12 #include <cstdlib>
    13 #include <cstring>
    14 #include <iostream>
    15 #include <algorithm>
    16 #define LL long long
    17 #define dob complex<double>
    18 #define Abs(a) ((a) < 0 ? (-(a)) : (a))
    19 #define Max(a, b) ((a) > (b) ? (a) : (b))
    20 #define Min(a, b) ((a) < (b) ? (a) : (b))
    21 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
    22 #define writeln(x) (write(x), putchar('
    '))
    23 #define lowbit(x) ((x)&(-(x)))
    24 using namespace std;
    25 const int N = 100000*4;
    26 const double pi = acos(-1.0);
    27 
    28 int n, m, s, L, R[N+5];
    29 double q[N+5], sum, ans[N+5];
    30 dob a[N+5], b[N+5];
    31 
    32 void FFT(dob *A, int o) {
    33     for (int i = 0; i < n; i++) if (i > R[i]) swap(A[i], A[R[i]]);
    34     for (int i = 1; i < n; i <<= 1) {
    35     dob wn(cos(pi/i), sin(pi*o/i)), x, y;
    36     for (int j = 0; j < n; j += (i<<1)) {
    37         dob w(1, 0);
    38         for (int k = 0; k < i; k++, w *= wn) {
    39         x = A[j+k], y = w*A[i+j+k];
    40         A[j+k] = x+y, A[i+j+k] = x-y;
    41         }
    42     }
    43     }
    44 }
    45 void work() {
    46     scanf("%d", &n); n--; s = n;
    47     for (int i = 0; i <= n; i++) scanf("%lf", &q[i]), a[i] = q[i];
    48     for (int i = 1; i <= n; i++) b[i] = 1./i/i;
    49     m = n<<1; for (n = 1; n <= m; n <<= 1) L++;
    50     for (int i = 0; i < n; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
    51     FFT(a, 1), FFT(b, 1);
    52     for (int i = 0; i <= n; i++) a[i] *= b[i];
    53     FFT(a, -1);
    54     for (int i = 0; i <= s; i++) ans[i] = a[i].real()/n;
    55     for (int i = 0; i <= n; i++) a[i] = 0;
    56     for (int i = 0; i <= s; i++) a[i] = q[s-i];
    57     FFT(a, 1);
    58     for (int i = 0; i <= n; i++) a[i] *= b[i];
    59     FFT(a, -1);
    60     for (int i = 0; i <= s; i++) printf("%lf
    ", ans[i]-a[s-i].real()/n);
    61 }
    62 int main() {
    63     work();
    64     return 0;
    65 }
  • 相关阅读:
    两种三维点云密度聚类方法的研究与对比
    C++ string和char char*的转换
    七大排序算法总结
    map下标操作和insert区别
    c++ map 使用自定义结构做关键字
    BagFromImage安装与使用
    安装ipython notebook
    c++基本知识
    Python爬虫第一集
    91. Decode Ways
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/8372585.html
Copyright © 2011-2022 走看看