zoukankan      html  css  js  c++  java
  • [BZOJ 3894]文理分科

    Description

    题库链接

    给你一个 (n imes m) 的网格,每个网格代表一个学生。一个学生 ((i,j)) 选文,那么可以获得 (a_{i,j}) 的愉♂悦值;若选理那么可以获得 (b_{i,j}) 的愉♂悦值。

    如果这个人和他四连通的所有人选择是一样的,那么可以额外获得 (ea_{i,j}) (或 (eb_{i,j}) ,取决于均选文或选理)点愉♂悦值。

    求愉悦值总和最大。

    (1leq n,mleq 100)

    Solution

    建立最小割模型,对于相邻的 (5) 个节点,我们建立新的节点 (x,y) ,如图(对于一个五连通块来说):

    如果割掉的是 (a) 边,那么表示选理,割掉的是 (b) 边,那么表示选文。

    若割掉 (ea) 边,表示不全选文,若割掉 (eb) 边,表示不全选理。

    可以用假设法证明图的正确性。

    Code

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 140000+5, inf = ~0u>>1;
    const int w1[4] = {-1, 1, 0, 0};
    const int w2[4] = {0, 0, -1, 1};
    
    int n, m, a[105][105], b[105][105], ea[105][105], eb[105][105];
    int hab[105][105], hea[105][105], heb[105][105];
    struct tt {int to, next, cap; }edge[N<<1];
    int path[N], top, S = N-2, T = N-1, cnt, ans;
    int sta[N], dist[N], cur[N];
    queue<int>Q;
    
    void add(int u, int v, int c) {
        edge[++top] = (tt){v, path[u], c}, path[u] = top;
        edge[++top] = (tt){u, path[v], 0}, path[v] = top;
    }
    bool bfs() {
        memset(dist, -1, sizeof(dist)); dist[S] = 1; Q.push(S);
        while (!Q.empty()) {
            int u = Q.front(); Q.pop();
            for (int i = path[u], v; ~i; i = edge[i].next)
                if (dist[v = edge[i].to] == -1 && edge[i].cap) {
                    dist[v] = dist[u]+1; Q.push(v);
                }
        }
        return dist[T] != -1;
    }
    int dinic() {
        int tolflow = 0;
        while (bfs()) {
            memcpy(cur, path, sizeof(cur)); int u = S, top = 0;
            while (true) {
                if (u == T) {
                    int minflow = inf, loc;
                    for (int i = 1; i <= top; i++) if (edge[sta[i]].cap < minflow) loc = i, minflow = edge[sta[i]].cap;
                    for (int i = 1; i <= top; i++) edge[sta[i]].cap -= minflow, edge[sta[i]^1].cap += minflow;
                    tolflow += minflow, u = edge[sta[loc]^1].to, top = loc-1;
                }
                for (int v, &i = cur[u]; ~i; i = edge[i].next)
                    if (dist[v = edge[i].to] == dist[u]+1 && edge[i].cap) {
                        sta[++top] = i, u = v; break;
                    }
                if (cur[u] == -1) {
                    dist[u] = -1; if (top == 0) break;
                    u = edge[sta[top--]^1].to;
                }
            }
        }
        return tolflow;
    }
    void work() {
        memset(path, top = -1, sizeof(path));
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) scanf("%d", &a[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) scanf("%d", &b[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) scanf("%d", &ea[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) scanf("%d", &eb[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) hab[i][j] = ++cnt;
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) hea[i][j] = ++cnt;
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) heb[i][j] = ++cnt;
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) add(S, hab[i][j], a[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) add(hab[i][j], T, b[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) add(S, hea[i][j], ea[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) add(heb[i][j], T, eb[i][j]);
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) {
            add(hea[i][j], hab[i][j], inf);
            for (int k = 0; k < 4; k++) if (hab[i+w1[k]][j+w2[k]] != 0)
                add(hea[i][j], hab[i+w1[k]][j+w2[k]], inf);
        }
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) {
            add(hab[i][j], heb[i][j], inf);
            for (int k = 0; k < 4; k++) if (hab[i+w1[k]][j+w2[k]] != 0)
                add(hab[i+w1[k]][j+w2[k]], heb[i][j], inf);
        }
        for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++)
            ans += a[i][j]+b[i][j]+ea[i][j]+eb[i][j];   
        printf("%d
    ", ans-dinic());
    }
    int main() {work(); return 0; }
  • 相关阅读:
    tf.contrib.layers.fully_connected参数笔记
    关于RNN(Recurrent Neural Network)的一篇文章
    tf.contrib.rnn.LSTMCell 里面参数的意义
    机器学习笔记——k-近邻算法(一)简单代码
    labview2016崩溃解决方案
    tecplot 插值问题
    网络设备
    tcp
    udp
    icmp
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/9240616.html
Copyright © 2011-2022 走看看