zoukankan      html  css  js  c++  java
  • LOJ 2737 「JOISC 2016 Day 3」电报 ——思路+基环树DP

    题目:https://loj.ac/problem/2737

    相连的关系形成若干环 / 内向基环树 。如果不是只有一个环的话,就得断开一些边使得图变成若干链。边的边权是以它为出边的点的点权。

    基环树的树的部分可以 DP 或者贪心,贪心就是只在分叉处断边。

    对于每个环,先做出 f[ i ][ 0/1 ] 表示环上这个点 不向下 / 向下 延伸链的代价,然后在环上 DP 。

    方法就是先指定 tot -> 1 的边不选, DP 一番,再制定 tot -> 1 的边选, DP 一番。

    如果指定 tot -> 1 的边选,要注意不能连出一个环。所以不仅有 g[ i ][ 0/1 ] 表示 “可以向右延伸” / “无要求” , 还要有一个 [ 0/1 ] 表示 “之前有没有断过” 。不过不用有 g[ i ][ 1 ][ 1 ] ,因为 “无要求” 就是表示 i -> i+1 得断开,这样就一定 “断过” 了;所以就记 g[ i ][ 2 ] 表示 “之前断过,现在可以向右延伸” 。 g[ tot ][ 2 ] 就是指定 tot -> 1 的边选的时候加给答案的贡献。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define ll long long
    using namespace std;
    int rdn()
    {
      int ret=0;bool fx=1;char ch=getchar();
      while(ch>'9'||ch<'0'){if(ch=='-')fx=0;ch=getchar();}
      while(ch>='0'&&ch<='9')ret=ret*10+ch-'0',ch=getchar();
      return fx?ret:-ret;
    }
    ll Mn(ll a,ll b){return a<b?a:b;}
    ll Mx(ll a,ll b){return a>b?a:b;}
    const int N=1e5+5; const ll INF=1e14+5;
    int n,hd[N],xnt,to[N<<1],nxt[N<<1],w[N<<1],tp[N],tw[N],tot;
    int cd[N],cnt,col[N],tim,dfn[N],low[N],sta[N],top;
    ll ans,f[N][2],g[N][3]; bool vis[N],ins[N];
    void add(int x,int y,int z)
    {
      to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;w[xnt]=z;cd[x]++;
    }
    void tarjan(int cr)
    {
      dfn[cr]=low[cr]=++tim; sta[++top]=cr; ins[cr]=1;
      for(int i=hd[cr],v;i;i=nxt[i])
        if(!dfn[v=to[i]])tarjan(v),low[cr]=Mn(low[cr],low[v]);
        else if(ins[v])low[cr]=Mn(low[cr],dfn[v]);
      if(dfn[cr]==low[cr])
        {
          cnt++; int siz=0;
          do{
        ins[sta[top]]=0; col[sta[top]]=cnt; siz++;
          }while(sta[top--]!=cr);
          if(siz==1)col[cr]=0, cnt--;
        }
    }
    void dfs(int cr)
    {
      ins[cr]=1;
      for(int i=hd[cr],v;i;i=nxt[i])
        if(!col[v=to[i]])
          {
        dfs(v=to[i]);
            ll t0=f[cr][0]+f[v][1]+w[i];
            ll t1=Mn(f[cr][0]+f[v][1],f[cr][1]+f[v][1]+w[i]);
        f[cr][0]=t0; f[cr][1]=t1;
          }
    }
    void ini_dfs(int cr,int st)
    {
      dfs(cr); tp[++tot]=cr;
      for(int i=hd[cr],v;i;i=nxt[i])
        if(col[v=to[i]])
          {tw[tot]=w[i]; if(v!=st)ini_dfs(v,st);}
    }
    void solve(int cr)
    {
      tot=0; ini_dfs(cr,cr);
      g[1][0]=tw[tot]+f[tp[1]][0]; g[1][1]=tw[tot]+f[tp[1]][1];//f[tp[]]!!
      for(int i=2;i<=tot;i++)
        {
          int cr=tp[i];//
          g[i][0]=Mn(g[i-1][0],g[i-1][1]+tw[i-1])+f[cr][0];
          g[i][1]=Mn(g[i-1][0],g[i-1][1]+tw[i-1])+f[cr][1];
        }
      ll ret=g[tot][1];
      g[1][0]=f[tp[1]][0]; g[1][1]=f[tp[1]][1]; g[1][2]=g[1][3]=INF;
      for(int i=2;i<=tot;i++)
        {
          int cr=tp[i];
          g[i][0]=Mn(g[i-1][0],g[i-1][1]+tw[i-1])+f[cr][0];
          g[i][1]=Mn(g[i-1][0],g[i-1][1]+tw[i-1])+f[cr][1];
          g[i][2]=Mn(g[i-1][2],g[i-1][1]+tw[i-1])+f[cr][0];
        }
      ans+=Mn(ret,g[tot][2]);
    }
    int main()
    {
      n=rdn();
      for(int i=1,d,z;i<=n;i++)
        { d=rdn(); z=rdn(); add(d,i,z);}
      bool fg=0;for(int i=1;i<=n;i++)if(cd[i]!=1){fg=1;break;}
      if(!fg)
        {
          int cr=1;while(!vis[cr]){vis[cr]=1;cr=to[hd[cr]];}
          for(int i=1;i<=n;i++)if(!vis[i]){fg=1;break;}
          if(!fg){puts("0");return 0;}
        }
      for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);
      for(int i=1;i<=n;i++)
        if(!ins[i]&&col[i])solve(i);
      printf("%lld
    ",ans); return 0;
    }
  • 相关阅读:
    正则表达式30分钟入门教程
    Python的神奇方法指南
    Python 2.7教程
    javaweb开发.常用的第三方包
    javaweb开发.页面中文乱码问题
    javaweb开发.eclipse使用小常识
    javaweb开发3.基于Servlet+JSP+JavaBean开发模式的用户登录注册
    ionic3使用第三方图标
    json-server使用及路由配置
    javaweb开发2.新建一个javaweb项目
  • 原文地址:https://www.cnblogs.com/Narh/p/10650554.html
Copyright © 2011-2022 走看看