zoukankan      html  css  js  c++  java
  • hdu 5511 Minimum Cut-Cut——分类讨论思想+线段树合并

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5511

    题意:割一些边使得无向图变成不连通的,并且恰好割了两条给定生成树上的边。满足非树边两段一定在给定生成树的根的不同子树里。求最小边数。

    看了题解。

      一直考虑割出来的是树上的连通块之类的。

      其实考虑讨论那两条树边的关系。

      1.两条边是祖先--后代关系。

        答案就是它们之间夹着的连通块伸出去的非树边条数+2。所以两条边离得越近越好。

        那么就是一个点的父亲边+该点父亲的父亲边。O(n)枚举即可。

        注意1号点没有父亲边。

      2.两条边不是祖先--后代关系。

        那么两条边引导了两个子树。答案就是这两个子树伸出去的非树边条数 - 两个子树相互的非树边条数*2 + 2 。

        然后又不太会了。

        其实考虑答案形如 d[ x ] + d[ y ] - 2*cnt( x, y ) ,那么枚举 x ,用线段树维护 d[ y ] - 2*cnt( x, y ) 的最小值即可。注意1号点不能参与。

        那么就是线段树合并得到 cnt( ) ,再加入当前根 cr 的贡献,就是 cr 连出去的点 y , y 到父亲的链上的值都 - 2 。

        还要把 cr 的位置设成 INF 。

      动态开点。每个点的初值是 “只考虑 d[ ] 不考虑 cnt ,区间最小值” 。这个可以预处理。借鉴了 Claris 的写法,把该值记在以 cr << 1 , cr<<1|1 为结构得到的线段树角标上。

      注意如果没有左孩子或右孩子之类的,调用的是上述初值而不是 0 或 INF 。

      直接线段树合并,空间不行。考虑像 dsu on tree 一样,每个点继承其重孩子的线段树。线段树合并之后,轻孩子的线段树节点都删掉。这样同时又 log 个线段树,空间可行。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #define pb push_back
    #define ls Ls[cr]
    #define rs Rs[cr]
    using namespace std;
    int rdn()
    {
      int ret=0;bool fx=1;char ch=getchar();
      while(ch>'9'||ch<'0'){if(ch=='-')fx=0;ch=getchar();}
      while(ch>='0'&&ch<='9')ret=ret*10+ch-'0',ch=getchar();
      return fx?ret:-ret;
    }
    int Mx(int a,int b){return a>b?a:b;}
    int Mn(int a,int b){return a<b?a:b;}
    const int N=2e4+5,M=N*60,INF=1e6+5;
    int n,m,hd[N],xnt,to[N<<1],nxt[N<<1],rd[N],ans;
    int tim,dfn[N],dy[N],top[N],son[N],siz[N],fa[N],dep[N];
    int rt[N],tot,Ls[M],Rs[M],mn[M],tg[M];
    int w[N<<2],dlpl[M],dtop;
    vector<int> vt[N];
    void init()
    {
      xnt=0; for(int i=1;i<=n;i++)hd[i]=0;
      tim=tot=dtop=0;
      for(int i=1;i<=n;i++)vector<int>().swap(vt[i]);
      for(int i=1;i<=n;i++)son[i]=0;///
      for(int i=1;i<=n;i++)rt[i]=0;///
      for(int i=1;i<=n*4;i++)w[i]=INF;
    }
    void add(int x,int y)
    {to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;}
    void ini_build(int l,int r,int cr)
    {
      if(l==r)
        {if(dy[l]==1)w[cr]=INF;else w[cr]=rd[dy[l]];return;}
      int mid=l+r>>1;
      ini_build(l,mid,cr<<1);
      ini_build(mid+1,r,cr<<1|1);
      w[cr]=Mn(w[cr<<1],w[cr<<1|1]);
    }
    void dfs(int cr,int f)
    {
      fa[cr]=f; dep[cr]=dep[f]+1; siz[cr]=1;
      rd[cr]=vt[cr].size();
      for(int i=hd[cr],v;i;i=nxt[i])
        if((v=to[i])!=f)
          {
        dfs(v,cr); rd[cr]+=rd[v]; siz[cr]+=siz[v];
        if(siz[v]>siz[son[cr]])son[cr]=v;
          }
      if(cr==1)return;//
      for(int i=hd[cr],v;i;i=nxt[i])
        if((v=to[i])!=f)
          ans=Mn(ans,rd[cr]-rd[v]);
    }
    void dfsx(int cr,int f)
    {
      dfn[cr]=++tim; dy[tim]=cr;
      if(son[cr]){ top[son[cr]]=top[cr];dfsx(son[cr],cr);}
      for(int i=hd[cr],v;i;i=nxt[i])
        if((v=to[i])!=f&&v!=son[cr])
          { top[v]=v; dfsx(v,cr);}
    }
    int nwnd(int id)
    {
      int cr;
      if(dtop)cr=dlpl[dtop--]; else cr=++tot;
      ls=rs=tg[cr]=0; mn[cr]=w[id]; return cr;
    }
    void del(int x){ dlpl[++dtop]=x;}
    void pshp(int cr,int id)//if!!!
    {
      if(ls)mn[cr]=mn[ls]; else mn[cr]=w[id<<1];
      if(rs)mn[cr]=Mn(mn[cr],mn[rs]);
      else mn[cr]=Mn(mn[cr],w[id<<1|1]);
    }
    void pshd(int cr,int id)
    {
      if(!tg[cr])return; int w=tg[cr]; tg[cr]=0;
      if(!ls)ls=nwnd(id<<1); if(!rs)rs=nwnd(id<<1|1);
      tg[ls]+=w; tg[rs]+=w; mn[ls]+=w; mn[rs]+=w;
    }
    void mdfy(int l,int r,int &cr,int id,int p)
    {
      if(!cr)cr=nwnd(id); if(l==r){mn[cr]=INF;return;}
      int mid=l+r>>1; pshd(cr,id);
      if(p<=mid)mdfy(l,mid,ls,id<<1,p);
      else mdfy(mid+1,r,rs,id<<1|1,p);
      pshp(cr,id);
    }
    void add(int l,int r,int &cr,int id,int L,int R)
    {
      if(!cr)cr=nwnd(id);
      if(l>=L&&r<=R){tg[cr]-=2;mn[cr]-=2;return;}
      int mid=l+r>>1; pshd(cr,id);
      if(L<=mid)add(l,mid,ls,id<<1,L,R);
      if(mid<R)add(mid+1,r,rs,id<<1|1,L,R);
      pshp(cr,id);
    }
    void mrg(int l,int r,int &cr,int id,int v)
    {
      if(!cr){cr=v;return;} if(!v)return;
      if(l==r)
        {
          if(mn[cr]==INF||mn[v]==INF)mn[cr]=INF;
          else {mn[cr]+=mn[v]; mn[cr]-=rd[dy[l]];}
          del(v); return;
        }
      int mid=l+r>>1; pshd(cr,id); pshd(v,id);
      mrg(l,mid,ls,id<<1,Ls[v]);
      mrg(mid+1,r,rs,id<<1|1,Rs[v]);
      pshp(cr,id); del(v);
    }
    void solve(int cr)
    {
      if(son[cr]){ solve(son[cr]); rt[cr]=rt[son[cr]];}
      for(int i=hd[cr],v;i;i=nxt[i])
        if((v=to[i])!=fa[cr]&&v!=son[cr])
          {
        solve(v); mrg(1,n,rt[cr],1,rt[v]);
          }
      if(cr==1)return;////!!!
      mdfy(1,n,rt[cr],1,dfn[cr]);
      for(int i=0,lm=vt[cr].size();i<lm;i++)
        {
          int x=vt[cr][i];
          while(top[x]!=1)
        {
          add(1,n,rt[cr],1,dfn[top[x]],dfn[x]);
          x=fa[top[x]];
        }
          if(x>1)add(1,n,rt[cr],1,2,dfn[x]);///no 1
        }
      ans=Mn(ans,rd[cr]+mn[rt[cr]]);
    }
    int main()
    {
      int T=rdn();
      for(int t=1;t<=T;t++)
        {
          n=rdn();m=rdn(); init();
          for(int i=1,u,v;i<n;i++)
        {
          u=rdn();v=rdn();add(u,v);add(v,u);
        }
          for(int i=n,u,v;i<=m;i++)
        {
          u=rdn();v=rdn();
          vt[u].pb(v); vt[v].pb(u);
        }
          ans=INF; dfs(1,0);
          top[1]=1; dfsx(1,0);
          ini_build(1,n,1); solve(1);
          printf("Case #%d: %d
    ",t,ans+2);
        }
      return 0;
    }
    View Code
  • 相关阅读:
    OSG快速生成一个带有纹理的四边形Geometry
    Excel计算一列的和sum(A:A)
    如何区分SNAT和DNAT
    openstack 常用命令
    Access an instance through a console
    OpenStack网络指导手册 -基本网络概念
    vlan与交换机端口模式Access,Hybrid,Trunk
    网卡的混杂模式
    What is the difference between provider network and self-service network in OpenStack?
    C/C++程序终止时执行的函数——atexit()函数详解
  • 原文地址:https://www.cnblogs.com/Narh/p/11073015.html
Copyright © 2011-2022 走看看