zoukankan      html  css  js  c++  java
  • C++大数运算模板

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<iomanip>
    #include<algorithm>
    using namespace std;
     
    #define MAXN 9999
    #define MAXSIZE 10
    #define DLEN 4
     
    class BigNum
    {
    private:
        int a[1500];    //可以控制大数的位数
        int len;       //大数长度
    public:
        BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
        BigNum(const int);       //将一个int类型的变量转化为大数
        BigNum(const char*);     //将一个字符串类型的变量转化为大数
        BigNum(const BigNum &);  //拷贝构造函数
        BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算
     
        friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
        friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符
     
        BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算
        BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算
        BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算
        BigNum operator/(const int   &) const;    //重载除法运算符,大数对一个整数进行相除运算
     
        BigNum operator^(const int  &) const;    //大数的n次方运算
        int    operator%(const int  &) const;    //大数对一个int类型的变量进行取模运算
        bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
        bool   operator>(const int & t)const;      //大数和一个int类型的变量的大小比较
     
        void print();       //输出大数
    };
    BigNum::BigNum(const int b)     //将一个int类型的变量转化为大数
    {
        int c,d = b;
        len = 0;
        memset(a,0,sizeof(a));
        while(d > MAXN)
        {
            c = d - (d / (MAXN + 1)) * (MAXN + 1);
            d = d / (MAXN + 1);
            a[len++] = c;
        }
        a[len++] = d;
    }
    BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
    {
        int t,k,index,l,i;
        memset(a,0,sizeof(a));
        l=strlen(s);
        len=l/DLEN;
        if(l%DLEN)
            len++;
        index=0;
        for(i=l-1;i>=0;i-=DLEN)
        {
            t=0;
            k=i-DLEN+1;
            if(k<0)
                k=0;
            for(int j=k;j<=i;j++)
                t=t*10+s[j]-'0';
            a[index++]=t;
        }
    }
    BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
    {
        int i;
        memset(a,0,sizeof(a));
        for(i = 0 ; i < len ; i++)
            a[i] = T.a[i];
    }
    BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
    {
        int i;
        len = n.len;
        memset(a,0,sizeof(a));
        for(i = 0 ; i < len ; i++)
            a[i] = n.a[i];
        return *this;
    }
    istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
    {
        char ch[MAXSIZE*4];
        int i = -1;
        in>>ch;
        int l=strlen(ch);
        int count=0,sum=0;
        for(i=l-1;i>=0;)
        {
            sum = 0;
            int t=1;
            for(int j=0;j<4&&i>=0;j++,i--,t*=10)
            {
                sum+=(ch[i]-'0')*t;
            }
            b.a[count]=sum;
            count++;
        }
        b.len =count++;
        return in;
     
    }
    ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
    {
        int i;
        cout << b.a[b.len - 1];
        for(i = b.len - 2 ; i >= 0 ; i--)
        {
            cout.width(DLEN);
            cout.fill('0');
            cout << b.a[i];
        }
        return out;
    }
     
    BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
    {
        BigNum t(*this);
        int i,big;      //位数
        big = T.len > len ? T.len : len;
        for(i = 0 ; i < big ; i++)
        {
            t.a[i] +=T.a[i];
            if(t.a[i] > MAXN)
            {
                t.a[i + 1]++;
                t.a[i] -=MAXN+1;
            }
        }
        if(t.a[big] != 0)
            t.len = big + 1;
        else
            t.len = big;
        return t;
    }
    BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算
    {
        int i,j,big;
        bool flag;
        BigNum t1,t2;
        if(*this>T)
        {
            t1=*this;
            t2=T;
            flag=0;
        }
        else
        {
            t1=T;
            t2=*this;
            flag=1;
        }
        big=t1.len;
        for(i = 0 ; i < big ; i++)
        {
            if(t1.a[i] < t2.a[i])
            {
                j = i + 1;
                while(t1.a[j] == 0)
                    j++;
                t1.a[j--]--;
                while(j > i)
                    t1.a[j--] += MAXN;
                t1.a[i] += MAXN + 1 - t2.a[i];
            }
            else
                t1.a[i] -= t2.a[i];
        }
        t1.len = big;
        while(t1.a[len - 1] == 0 && t1.len > 1)
        {
            t1.len--;
            big--;
        }
        if(flag)
            t1.a[big-1]=0-t1.a[big-1];
        return t1;
    }
     
    BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算
    {
        BigNum ret;
        int i,j,up;
        int temp,temp1;
        for(i = 0 ; i < len ; i++)
        {
            up = 0;
            for(j = 0 ; j < T.len ; j++)
            {
                temp = a[i] * T.a[j] + ret.a[i + j] + up;
                if(temp > MAXN)
                {
                    temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
                    up = temp / (MAXN + 1);
                    ret.a[i + j] = temp1;
                }
                else
                {
                    up = 0;
                    ret.a[i + j] = temp;
                }
            }
            if(up != 0)
                ret.a[i + j] = up;
        }
        ret.len = i + j;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--;
        return ret;
    }
    BigNum BigNum::operator/(const int & b) const   //大数对一个整数进行相除运算
    {
        BigNum ret;
        int i,down = 0;
        for(i = len - 1 ; i >= 0 ; i--)
        {
            ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
            down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
        }
        ret.len = len;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--;
        return ret;
    }
    int BigNum::operator %(const int & b) const    //大数对一个int类型的变量进行取模运算
    {
        int i,d=0;
        for (i = len-1; i>=0; i--)
        {
            d = ((d * (MAXN+1))% b + a[i])% b;
        }
        return d;
    }
    BigNum BigNum::operator^(const int & n) const    //大数的n次方运算
    {
        BigNum t,ret(1);
        int i;
        if(n<0)
            exit(-1);
        if(n==0)
            return 1;
        if(n==1)
            return *this;
        int m=n;
        while(m>1)
        {
            t=*this;
            for( i=1;i<<1<=m;i<<=1)
            {
                t=t*t;
            }
            m-=i;
            ret=ret*t;
            if(m==1)
                ret=ret*(*this);
        }
        return ret;
    }
    bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
    {
        int ln;
        if(len > T.len)
            return true;
        else if(len == T.len)
        {
            ln = len - 1;
            while(a[ln] == T.a[ln] && ln >= 0)
                ln--;
            if(ln >= 0 && a[ln] > T.a[ln])
                return true;
            else
                return false;
        }
        else
            return false;
    }
    bool BigNum::operator >(const int & t) const    //大数和一个int类型的变量的大小比较
    {
        BigNum b(t);
        return *this>b;
    }
     
    void BigNum::print()    //输出大数
    {
        int i;
        cout << a[len - 1];
        for(i = len - 2 ; i >= 0 ; i--)
        {
            cout.width(DLEN);
            cout.fill('0');
            cout << a[i];
        }
        cout << endl;
    }
    

      使用时直接 BigNum a,b,c; 可定义大数直接进行运算

  • 相关阅读:
    hihoCoder #1062 : 最近公共祖先·一
    hihoCoder #1050 : 树中的最长路
    hihoCoder #1049 : 后序遍历
    108 Convert Sorted Array to Binary Search Tree 将有序数组转换为二叉搜索树
    107 Binary Tree Level Order Traversal II 二叉树的层次遍历 II
    106 Construct Binary Tree from Inorder and Postorder Traversal 从中序与后序遍历序列构造二叉树
    105 Construct Binary Tree from Preorder and Inorder Traversal 从前序与中序遍历序列构造二叉树
    104 Maximum Depth of Binary Tree 二叉树的最大深度
    102 Binary Tree Level Order Traversal 二叉树的层次遍历
    101 Symmetric Tree 判断一颗二叉树是否是镜像二叉树
  • 原文地址:https://www.cnblogs.com/Never-Land/p/11211556.html
Copyright © 2011-2022 走看看