zoukankan      html  css  js  c++  java
  • 迪杰斯特拉算法(Dijkstra)

    模板一:

    时间复杂度O(n2

     1 int dijkstra(int s,int m)  //s为起点,m为终点
     2 {
     3     memset(dist,0,sizeof(dist));   //初始化,dist数组用来储存s到各个点的距离
     4     memset(v,0,sizeof(v));         //初始化v数组,是否已标记
     5     for(int i=1;i<=n;++i)          //++i返回的是引用,稍微快一点
     6     {
     7         dist[i]=e[s][i];           //初始化,e[s][i]数组表示是点s到点i的权值,数组e用来存有向图或无向图的权值,用INF初始化
     8     }
     9     for(int i=1;i<=n;++i)
    10     {
    11         k=INF,u=0;
    12         for(int j=1;j<=n;++j)      //找出当前dist最小的点
    13         {
    14             if(!v[j]&&dist[j]<k)
    15             {
    16                 k=dist[j];
    17                 u=j;
    18             }
    19         }
    20         v[u]=1;                    //标记
    21         for(int j=1;j<=n;++j)      //更新与点u相连的点的权值和
    22         {
    23             if(!v[j]&&e[u][j]<INF&&dist[u]+e[u][j]<dist[j])    //比较从点s到点u载到点j的权值和点s直接到点j的权值
    24             {
    25                 dist[j]=dist[u]+e[u][j];
    26             }
    27         }
    28     }
    29     return dist[m];  
    30 }

    模板二:

    时间复杂度 O(mlogn)m为边数,n为顶点数。

    对于稀疏图的效果显著,对稠密图慎用。

     1 const int INF = 0x3f3f3f3f;
     2 const int maxn = 150;
     3 struct Edge
     4 {
     5     int from, to, dist;
     6     Edge(int u, int v, int d) :from(u), to(v), dist(d) {}
     7 };
     8 struct HeapNode
     9 {
    10     int d, u;
    11     HeapNode(int D,int U):d(D),u(U){}
    12     bool operator < (const HeapNode& rhs) const {
    13         return d > rhs.d;
    14     }
    15 };
    16 struct Dijkstra
    17 {
    18     int n, m;
    19     vector<Edge> edges;
    20     vector<int> G[maxn];    //maxn要大于顶点数
    21     bool done[maxn];
    22     int d[maxn];
    23     int p[maxn];
    24 
    25     void init(int n)
    26     {
    27         this->n = n;
    28         for (int i = 0; i < n; ++i)
    29             G[i].clear();
    30         edges.clear();
    31     }
    32 
    33     void addEdge(int from, int to, int dist)
    34     {
    35         edges.push_back(Edge(from, to, dist));
    36         m = edges.size();
    37         G[from].push_back(m - 1);
    38     }
    39 
    40     void dijkstra(int s, int kk)          //s为起点 kk为终点
    41     {
    42         priority_queue<HeapNode> Q;
    43         for (int i = 0; i < n; ++i)
    44             d[i] = INF;
    45         d[s] = 0;
    46         memset(done, 0, sizeof(done));
    47         Q.push(HeapNode( 0, s ));
    48         while (!Q.empty())
    49         {
    50             HeapNode x = Q.top();
    51             Q.pop();
    52             int u = x.u;
    53             if (u == kk)                  //到终点就退出
    54             {
    55                 printf("%d
    ", x.d);
    56                 break;
    57             }
    58             if (done[u])
    59             {
    60                 continue;
    61             }
    62             done[u] = true;
    63             for (int i = 0; i < G[u].size(); ++i)
    64             {
    65                 Edge& e = edges[G[u][i]];
    66                 if (d[u] + e.dist < d[e.to])
    67                 {
    68                     d[e.to] = d[u] + e.dist;
    69                     p[e.to] = G[u][i];
    70                     Q.push(HeapNode(d[e.to], e.to ));
    71                 }
    72             }
    73         }
    74     }
    75 
    76 };

    放一道模板题

    http://acm.hdu.edu.cn/showproblem.php?pid=2544

    AC代码

      1 #include <iostream>
      2 #include <stdio.h>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <queue>
      7 using namespace std;
      8 const int INF = 0x3f3f3f3f;
      9 const int maxn = 150;
     10 struct Edge
     11 {
     12     int from, to, dist;
     13     Edge(int u, int v, int d) :from(u), to(v), dist(d) {}
     14 };
     15 struct HeapNode
     16 {
     17     int d, u;
     18     HeapNode(int D,int U):d(D),u(U){}
     19     bool operator < (const HeapNode& rhs) const {
     20         return d > rhs.d;
     21     }
     22 };
     23 struct Dijkstra
     24 {
     25     int n, m;
     26     vector<Edge> edges;
     27     vector<int> G[maxn];    //maxn要大于顶点数
     28     bool done[maxn];
     29     int d[maxn];
     30     int p[maxn];
     31 
     32     void init(int n)
     33     {
     34         this->n = n;
     35         for (int i = 0; i < n; ++i)
     36             G[i].clear();
     37         edges.clear();
     38     }
     39 
     40     void addEdge(int from, int to, int dist)
     41     {
     42         edges.push_back(Edge(from, to, dist));
     43         m = edges.size();
     44         G[from].push_back(m - 1);
     45     }
     46 
     47     void dijkstra(int s, int kk)          //s为起点 kk为终点
     48     {
     49         priority_queue<HeapNode> Q;
     50         for (int i = 0; i < n; ++i)
     51             d[i] = INF;
     52         d[s] = 0;
     53         memset(done, 0, sizeof(done));
     54         Q.push(HeapNode( 0, s ));
     55         while (!Q.empty())
     56         {
     57             HeapNode x = Q.top();
     58             Q.pop();
     59             int u = x.u;
     60             if (u == kk)
     61             {
     62                 printf("%d
    ", x.d);
     63                 break;
     64             }
     65             if (done[u])
     66             {
     67                 continue;
     68             }
     69             done[u] = true;
     70             for (int i = 0; i < G[u].size(); ++i)
     71             {
     72                 Edge& e = edges[G[u][i]];
     73                 if (d[u] + e.dist < d[e.to])
     74                 {
     75                     d[e.to] = d[u] + e.dist;
     76                     p[e.to] = G[u][i];
     77                     Q.push(HeapNode(d[e.to], e.to ));
     78                 }
     79             }
     80         }
     81     }
     82 
     83 };
     84 int n, m, x, y, k;
     85 Dijkstra d;
     86 int main()
     87 {
     88     while (cin>>n>>m)
     89     {
     90         d.init(n);
     91         if (n == 0 && m == 0)
     92             break;
     93         while (m--)
     94         {
     95             cin >> x >> y >> k;
     96             d.addEdge(x - 1, y - 1, k);
     97             d.addEdge(y - 1, x - 1, k);
     98         }
     99         d.dijkstra(0, n - 1);
    100     }
    101     return 0;
    102 }
    View Code

     持续更新……

  • 相关阅读:
    C语言I博客作业08
    C语言I博客作业07
    第十周助教总结
    关于Dev-c++运行时与Windows不兼容问题
    C语言I博客作业06
    第九周助教总结
    C语言I作业07
    C语言I博客作业06
    C语言I作业05

  • 原文地址:https://www.cnblogs.com/Nicholas-Rain/p/10941323.html
Copyright © 2011-2022 走看看