zoukankan      html  css  js  c++  java
  • HDU

    Problem Destribe

    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that
    在这里插入图片描述
    and the total cost of each subset is minimal.

    Input

    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

    Output

    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

    Sample Input

    2
    3 2
    1 2 4
    4 2
    4 7 10 1

    Sample Output

    Case 1: 1
    Case 2: 18

    Hint

    The answer will fit into a 32-bit signed integer.

    题意 : 把n个数字 分成m个集合。 每个集合的价值是 这个集合中 (max-min)^2。 输出最

    少的价值

    思路 : 我们可以使用 dp[i][j] 代表 以 j 结尾 第 j 个集合的最小值

    那么可以容易的推出来 dp[i][j] = min { dp[k][j-1] + ( v[j] - v[k] ) * ( v[j] - v[k] ) } ;

    但是这个算法的时间复杂度是 O( n^3 ) 很容易 TLE ,因此我们需要用到斜率进行优化 ,

    其实这个题几乎是斜率优化的裸题了,没学过的可以学习一下

    AC code :

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    
    const int maxn = 1e4+50;
    const int maxm = 5e3+50;
    
    ll dp[maxn][maxm] ,v[maxn] ;
    int n ,m ;
    int que[maxn] ,head ,tail ;
    
    ll getdp(int i,int j,int k) {
    	return dp[k][j-1] + (v[i] - v[k + 1]) * (v[i] - v[k + 1]);
    }
    
    ll y(int j,int k,int q) {
    	return dp[k][j-1] + v[k + 1] * v[k + 1] - (dp[q][j-1] + v[q + 1] * v[q + 1]);
    }
    
    ll x(int k,int q) {
    	return 2 * ( v[k + 1] - v[q + 1] );
    }
    
    int main() {
    	int t ,ncase = 1 ; cin>>t;
    	while(t--) {
    		scanf("%d %d",&n ,&m );
    		for (int i = 1;i<=n;i++) scanf("%lld",&v[i] );
    		sort(v + 1 ,v + n + 1 );
    		for (int i = 1;i<=n;i++) dp[i][1] = (v[i] - v[1]) * (v[i] - v[1]);
    		for (int i = 2;i<=m;i++) {
    			head = tail = 0; que[tail ++] = i - 1;
    			for (int j = i;j<=n;j++) {
    				while(head + 1 < tail && y(i ,que[head+1] ,que[head]) < x(que[head+1] ,que[head]) * v[j] ) head ++;
    				dp[j][i] = getdp(j ,i ,que[head] );
    				while(head + 1 < tail && y(i ,que[tail-1] ,que[tail-2]) * x(j ,que[tail-1]) >= y(i ,j ,que[tail-1]) * x(que[tail-1] ,que[tail-2]) ) tail --;
    				que[tail ++] = j;
    			}
    		}
    		printf("Case %d: ",ncase++);
    		printf("%lld
    ",dp[n][m]);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    [你必须知道的.NET] 第四回:后来居上:class和struct
    [你必须知道的.NET]第十回:品味类型值类型与引用类型(下)-应用征途
    [你必须知道的.NET]第十一回:参数之惑传递的艺术(上)
    [你必须知道的.NET] 第一回:恩怨情仇:is和as
    [Anytao.History] 排名进入1000,未来值得努力
    [你必须知道的.NET] 第三回:历史纠葛:特性和属性
    [你必须知道的.NET] 第八回:品味类型值类型与引用类型(上)-内存有理
    [你必须知道的.NET] 第五回:深入浅出关键字把new说透
    [你必须知道的.NET]第十二回:参数之惑传递的艺术(下)
    .NET 3.5
  • 原文地址:https://www.cnblogs.com/Nlifea/p/11745941.html
Copyright © 2011-2022 走看看