zoukankan      html  css  js  c++  java
  • Ultra-QuickSort (利用归并排序求逆序数)

    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
    9 1 0 5 4 ,
    Ultra-QuickSort produces the output
    这里写图片描述
    0 1 4 5 9 .
    Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

    Input

    The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

    Output

    For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

    Sample Input

    5
    9
    1
    0
    5
    4
    3
    1
    2
    3
    0

    Sample Output

    6
    0
    可能会很不好想,其实这道题就是让求逆序数,原本我用的树状数组谁知道T了,用了归并排序才AC
    AC code:

    #include <iostream>
    #include <cstdio>
    using namespace std;
    const int MAXN = 500000+5;
    long long cnt = 0;
    int a[MAXN],p[MAXN];
    void Merge_Array(int first, int mid, int last)
    {
        int i=first, j=mid+1, k=first;
        while(i<=mid && j<=last)
        {
            if(a[i] <= a[j])
                p[k++] = a[i++];
            else
            {
                p[k++] = a[j++];
                cnt += j-k;
            }
        }
        while(i <= mid)
            p[k++] = a[i++];
        while(j <= last)
            p[k++] = a[j++];
        for(int i=first; i<=last; i++)
            a[i] = p[i];
    }
    void Merge_Sort(int first, int last)
    {
        if(first < last)
        {
            int mid = (first + last) >> 1;
            Merge_Sort(first, mid);
            Merge_Sort(mid+1, last);
            Merge_Array(first, mid, last);
        }
    }
    int Scan()
    {
        int res=0,ch,flag=0;
        if((ch=getchar())=='-')
            flag=1;
        else if(ch>='0'&&ch<='9')
            res=ch-'0';
        while((ch=getchar())>='0'&&ch<='9')
            res=res*10+ch-'0';
        return flag?-res:res;
    }
    
    void Out(long long a)
    {
        if(a>9)
            Out(a/10);
        putchar(a%10+'0');
    }
    int main()
    {
        int n;
        while(~scanf("%d",&n) && n)
        {
            cnt = 0;
            for(int i=0; i<n; i++)
                a[i] = Scan();
            Merge_Sort(0, n-1);
            Out(cnt);
            puts("");
        }
        return 0;
    }

    TLE code:

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <map>
    
    using namespace std;
    
    const int maxn = 5e5+5;
    
    int bit[maxn];
    int maxx;
    
    int pos;
    
    struct node {
        int val,id,v;
    }ss[maxn];
    
    int lowbit(int pos){
        return (pos & (-pos));
    }
    
    void update(int pos,int val) {
        while(pos <= maxx) {
            bit[pos] += val;
            pos += lowbit(pos);
        }
    }
    
    int query(int pos){
        int res = 0;
        while(pos > 0) {
            res += bit[pos];
            pos -= lowbit(pos);
        }
        return res;
    }
    
    int cmp(node x,node y) {
        return x.val<y.val;
    }
    
    int cmp1(node x,node y) {
        return x.id<y.id;
    }
    
    int main(){
        int t; 
        while(cin>>t && t)
        {
            map<int,int>mp;
            memset(bit,0,sizeof(bit));
            for (int i = 0;i<t;i++) {
                scanf("%d",&ss[i].val);
                ss[i].id = i;
            }
            sort(ss,ss+t,cmp); pos = 0;
            for (int i = 0;i<t;i++) {
                if ( !mp[ss[i].val] )
                    mp[ss[i].val] = ++pos;
                ss[i].v = pos;
            } maxx = pos;
            sort(ss,ss+t,cmp1);
            int sum = 0;
            for (int i = 0;i<t;i++) {
                sum += (query(maxx)-query(ss[i].v));
                update(ss[i].v,1);
            }
            printf("%d
    ",sum);
        }
        return 0;
    }
  • 相关阅读:
    Apache Pig的前世今生
    openssl之EVP系列之6---EVP_Encrypt系列函数编程架构及样例
    P3388 【模板】割点(割顶)
    让priority_queue支持小根堆的几种方法
    2017.11.7解题报告
    一个例子教你如何与出题人斗智斗勇
    debug
    树上倍增求LCA及例题
    素数的筛法
    Catalan卡特兰数入门
  • 原文地址:https://www.cnblogs.com/Nlifea/p/11745954.html
Copyright © 2011-2022 走看看