题意:给一个n个数的序列(n<1e5),问有几个子序列是gcd == 1的
题解:莫比乌斯或者容斥,直接考虑,f(1) = mu[1]*F(1)+mu[2]*F(2)+....F[n]是2^(因子为n的数的个数)-1
#include <bits/stdc++.h> #define maxn 100100 #define INF 0x3f3f3f3f typedef long long ll; using namespace std; bool isprime[maxn]; const ll mod = 1e9+7; ll num=0, mu[maxn], prime[maxn], a[maxn], dir[maxn]; void mobi(ll n){ memset(isprime, true, sizeof(isprime)); isprime[1] = false; mu[1] = 1; for(ll i=2;i<n;i++){ if(isprime[i]){ prime[num++] = i; mu[i] = -1; } for(ll j=0;j<num;j++){ if(i*prime[j] > n) break; isprime[i*prime[j]] = false; if(i%prime[j]==0){ mu[i*prime[j]] = 0; break; } else mu[i*prime[j]] = -mu[i]; } } } ll power(ll x,ll t){ ll ans=1; x %= mod; while(t){ if(t&1) ans = ans*x%mod; x = x*x%mod; t >>= 1; } return (ans-1)%mod; } int main(){ ll n, ans = 0; scanf("%lld", &n); mobi(100001); for(ll i=0;i<n;i++){ scanf("%lld", &a[i]); for(ll j=1;j*j<=a[i];j++){ if(a[i] % j == 0){ dir[j]++; if(j != a[i]/j) dir[a[i]/j]++; } } } for(ll i=1;i<=100000;i++){ ans = (ans+mu[i]*power(2, dir[i]))%mod; } printf("%lld ", (ans+mod)%mod); return 0; }