zoukankan      html  css  js  c++  java
  • gym101650F Feng Shui

    题意:一个凸多边形,在里面放两个半径为r的圆,问两个圆的最大距离的坐标是多少

    题解:两个圆要满足在多边形里面,所有的圆形可能位置就是这个多边形向内r形成的多边形,可以用半平面交找到这个多边形,(线段平移用到法向量),再找出这个多边形最远的两个点,O(n*n)枚举即可,这里套用别人模板

    #include <bits/stdc++.h>
    #define LL long long
    #define PI 3.1415926535897932384626
    #define maxn 1000
    #define EXIT exit(0);
    #define DEBUG puts("Here is a BUG");
    #define CLEAR(name, init) memset(name, init, sizeof(name))
    const double eps = 1e-6;
    const int MAXN = (int)1e9 + 5;
    using namespace std;
    
    #define Vector Point
    
    #define ChongHe 0
    #define NeiHan 1
    #define NeiQie 2
    #define INTERSECTING 3
    #define WaiQie 4
    #define XiangLi 5
    
    int dcmp(double x) { return fabs(x) < eps ? 0 : (x < 0 ? -1 : 1); }
    
    struct Point {
        double x, y;
    
        Point(const Point& rhs): x(rhs.x), y(rhs.y) { } //拷贝构造函数
        Point(double x = 0.0, double y = 0.0): x(x), y(y) { }   //构造函数
    
        friend istream& operator >> (istream& in, Point& P) { return in >> P.x >> P.y; }
        friend ostream& operator << (ostream& out, const Point& P) { return out << P.x << ' ' << P.y; }
    
        friend Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
        friend Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
        friend Vector operator * (const Vector& A, const double& p) { return Vector(A.x*p, A.y*p); }
        friend Vector operator / (const Vector& A, const double& p) { return Vector(A.x/p, A.y/p); }
        friend bool operator == (const Point& A, const Point& B) { return dcmp(A.x-B.x) == 0 && dcmp(A.y-B.y) == 0; }
        friend bool operator < (const Point& A, const Point& B) { return A.x < B.x || (A.x == B.x && A.y < B.y); }
    
        void in(void) { scanf("%lf%lf", &x, &y); }
        void out(void) { printf("%lf %lf", x, y); }
    };
    
    struct Line {
        Point P;    //直线上一点
        Vector dir; //方向向量(半平面交中该向量左侧表示相应的半平面)
        double ang; //极角,即从x正半轴旋转到向量dir所需要的角(弧度)
    
        Line() { }  //构造函数
        Line(const Line& L): P(L.P), dir(L.dir), ang(L.ang) { }
        Line(const Point& P, const Vector& dir): P(P), dir(dir) { ang = atan2(dir.y, dir.x); }
    
        bool operator < (const Line& L) const { //极角排序
            return ang < L.ang;
        }
    
        Point point(double t) { return P + dir*t; }
    };
    
    typedef vector<Point> Polygon;
    
    struct Circle {
        Point c;    //圆心
        double r;   //半径
    
        Circle() { }
        Circle(const Circle& rhs): c(rhs.c), r(rhs.r) { }
        Circle(const Point& c, const double& r): c(c), r(r) { }
    
        Point point(double ang) const { return Point(c.x + cos(ang)*r, c.y + sin(ang)*r); } //圆心角所对应的点
        double area(void) const { return PI * r * r; }
    };
    
    double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }  //点积
    double Length(const Vector& A){ return sqrt(Dot(A, A)); }
    double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B)/Length(A)/Length(B)); }  //向量夹角
    double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }    //叉积
    double Area(const Point& A, const Point& B, const Point& C) { return fabs(Cross(B-A, C-A)); }
    
    //三边构成三角形的判定
    bool check_length(double a, double b, double c) {
        return dcmp(a+b-c) > 0 && dcmp(fabs(a-b)-c) < 0;
    }
    bool isTriangle(double a, double b, double c) {
        return check_length(a, b, c) && check_length(a, c, b) && check_length(b, c, a);
    }
    
    //平行四边形的判定(保证四边形顶点按顺序给出)
    bool isParallelogram(Polygon p) {
        if (dcmp(Length(p[0]-p[1]) - Length(p[2]-p[3])) || dcmp(Length(p[0]-p[3]) - Length(p[2]-p[1]))) return false;
        Line a = Line(p[0], p[1]-p[0]);
        Line b = Line(p[1], p[2]-p[1]);
        Line c = Line(p[3], p[2]-p[3]);
        Line d = Line(p[0], p[3]-p[0]);
        return dcmp(a.ang - c.ang) == 0 && dcmp(b.ang - d.ang) == 0;
    }
    
    //梯形的判定
    bool isTrapezium(Polygon p) {
        Line a = Line(p[0], p[1]-p[0]);
        Line b = Line(p[1], p[2]-p[1]);
        Line c = Line(p[3], p[2]-p[3]);
        Line d = Line(p[0], p[3]-p[0]);
        return (dcmp(a.ang - c.ang) == 0 && dcmp(b.ang - d.ang)) || (dcmp(a.ang - c.ang) && dcmp(b.ang - d.ang) == 0);
    }
    
    //菱形的判定
    bool isRhombus(Polygon p) {
        if (!isParallelogram(p)) return false;
        return dcmp(Length(p[1]-p[0]) - Length(p[2]-p[1])) == 0;
    }
    
    //矩形的判定
    bool isRectangle(Polygon p) {
        if (!isParallelogram(p)) return false;
        return dcmp(Length(p[2]-p[0]) - Length(p[3]-p[1])) == 0;
    }
    
    //正方形的判定
    bool isSquare(Polygon p) {
        return isRectangle(p) && isRhombus(p);
    }
    
    //三点共线的判定
    bool isCollinear(Point A, Point B, Point C) {
        return dcmp(Cross(B-A, C-B)) == 0;
    }
    
    //向量绕起点旋转
    Vector Rotate(const Vector& A, const double& rad) { return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad)); }
    
    //向量的单位法线(调用前请确保A 不是零向量)
    Vector Normal(const Vector& A) {
        double len = Length(A);
        return Vector(-A.y / len, A.x / len);
    }
    
    //两直线交点(用前确保两直线有唯一交点,当且仅当Cross(A.dir, B.dir)非0)
    Point GetLineIntersection(const Line& A, const Line& B) {
        Vector u = A.P - B.P;
        double t = Cross(B.dir, u) / Cross(A.dir, B.dir);
        return A.P + A.dir*t;
    }
    
    //点到直线距离
    double DistanceToLine(const Point& P, const Line& L) {
        Vector v1 = L.dir, v2 = P - L.P;
        return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点到线段距离
    double DistanceToSegment(const Point& P, const Point& A, const Point& B) {
        if (A == B) return Length(P - A);
        Vector v1 = B - A, v2 = P - A, v3 = P - B;
        if (dcmp(Dot(v1, v2)) < 0) return Length(v2);
        if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
        return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点在直线上的投影
    Point GetLineProjection(const Point& P, const Line& L) { return L.P + L.dir*(Dot(L.dir, P - L.P)/Dot(L.dir, L.dir)); }
    
    //点在线段上的判定
    bool isOnSegment(const Point& P, const Point& A, const Point& B) {
        //若允许点与端点重合,可关闭下面的注释
        //if (P == A || P == B) return true;
        // return dcmp(Cross(A-P, B-P)) == 0 && dcmp(Dot(A-P, B-P)) < 0;
        return dcmp(Length(P-A) + Length(B-P) - Length(A-B)) == 0;
    }
    
    //线段相交判定
    bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) {
        //若允许在端点处相交,可适当关闭下面的注释
        //if (isOnSegment(a1, b1, b2) || isOnSegment(a2, b1, b2) || isOnSegment(b1, a1, a2) || isOnSegment(b2, a1, a2)) return true;
        double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1);
        double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
        return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
    }
    
    //多边形的有向面积
    double PolygonArea(Polygon po) {
        int n = po.size();
        double area = 0.0;
        for(int i = 1; i < n-1; i++) {
            area += Cross(po[i]-po[0], po[i+1]-po[0]);
        }
        return area * 0.5;
    }
    
    //点在多边形内的判定(多边形顶点需按逆时针排列)
    bool isInPolygon(const Point& p, const Polygon& poly) {
        int n = poly.size();
        for(int i = 0; i < n; i++) {
            //若允许点在多边形边上,可关闭下行注释
            // if (isOnSegment(p, poly[(i+1)%n], poly[i])) return true;
            if (Cross(poly[(i+1)%n]-poly[i], p-poly[i]) < 0) return false;
        }
        return true;
    }
    
    //过定点作圆的切线
    int getTangents(const Point& P, const Circle& C, std::vector<Line>& L) {
        Vector u = C.c - P;
        double dis = Length(u);
        if (dcmp(dis - C.r) < 0) return 0;
        if (dcmp(dis - C.r) == 0) {
            L.push_back(Line(P, Rotate(u, PI / 2.0)));
            return 1;
        }
        double ang = asin(C.r / dis);
        L.push_back(Line(P, Rotate(u, ang)));
        L.push_back(Line(P, Rotate(u, -ang)));
        return 2;
    }
    
    //直线和圆的交点
    int GetLineCircleIntersection(Line& L, const Circle& C, vector<Point>& sol) {
        double t1, t2;
        double a = L.dir.x, b = L.P.x - C.c.x, c = L.dir.y, d = L.P.y - C.c.y;
        double e = a*a + c*c, f = 2.0*(a*b + c*d), g = b*b + d*d - C.r*C.r;
        double delta = f*f - 4*e*g; //判别式
        if (dcmp(delta) < 0) return 0;  //相离
        if (dcmp(delta) == 0) { //相切
          t1 = t2 = -f / (2 * e);
          sol.push_back(L.point(t1));
          return 1;
        }
        t1 = (-f - sqrt(delta)) / (2.0 * e); sol.push_back(L.point(t1));    // 相交
        t2 = (-f + sqrt(delta)) / (2.0 * e); sol.push_back(L.point(t2));
        return 2;
    }
    
    //两圆位置关系判定
    int GetCircleLocationRelation(const Circle& A, const Circle& B) {
        double d = Length(A.c-B.c);
        double sum = A.r + B.r;
        double sub = fabs(A.r - B.r);
        if (dcmp(d) == 0) return dcmp(sub) != 0;
        if (dcmp(d - sum) > 0) return XiangLi;
        if (dcmp(d - sum) == 0) return WaiQie;
        if (dcmp(d - sub) > 0 && dcmp(d - sum) < 0) return INTERSECTING;
        if (dcmp(d - sub) == 0) return NeiQie;
        if (dcmp(d - sub) < 0) return NeiHan;
    }
    
    //两圆相交的面积
    double GetCircleIntersectionArea(const Circle& A, const Circle& B) {
        int rel = GetCircleLocationRelation(A, B);
        if (rel < INTERSECTING) return min(A.area(), B.area());
        if (rel > INTERSECTING) return 0;
        double dis = Length(A.c - B.c);
        double ang1 = acos((A.r*A.r + dis*dis - B.r*B.r) / (2.0*A.r*dis));
        double ang2 = acos((B.r*B.r + dis*dis - A.r*A.r) / (2.0*B.r*dis));
        return ang1*A.r*A.r + ang2*B.r*B.r - A.r*dis*sin(ang1);
    }
    
    //凸包(Andrew算法)
    //如果不希望在凸包的边上有输入点,把两个 <= 改成 <
    //如果不介意点集被修改,可以改成传递引用
    Polygon ConvexHull(vector<Point> p) {
        //预处理,删除重复点
        sort(p.begin(), p.end());
        p.erase(unique(p.begin(), p.end()), p.end());
        int n = p.size(), m = 0;
        Polygon res(n+1);
        for(int i = 0; i < n; i++) {
            while(m > 1 && Cross(res[m-1]-res[m-2], p[i]-res[m-2]) <= 0) m--;
            res[m++] = p[i];
        }
        int k = m;
        for(int i = n-2; i >= 0; i--) {
            while(m > k && Cross(res[m-1]-res[m-2], p[i]-res[m-2]) <= 0) m--;
            res[m++] = p[i];
        }
        m -= n > 1;
        res.resize(m);
        return res;
    }
    
    //点P在有向直线L左边的判定(线上算)
    bool isOnLeft(const Line& L, const Point& P) {
        return Cross(L.dir, P-L.P) >= 0;
    }
    
    //半平面交主过程
    //如果不介意点集被修改,可以改成传递引用
    Polygon HalfPlaneIntersection(vector<Line> L) {//有可能退化为点或者线段(修改isOnLeft部分)
        int n = L.size();
        int head, rear;     //双端队列的第一个元素和最后一个元素的下标
        vector<Point> p(n); //p[i]为q[i]和q[i+1]的交点
        vector<Line> q(n);  //双端队列
        Polygon ans;
    
        sort(L.begin(), L.end());   //按极角排序
        q[head=rear=0] = L[0];  //双端队列初始化为只有一个半平面L[0]
        for(int i = 1; i < n; i++) {
            while(head < rear && !isOnLeft(L[i], p[rear-1])) rear--;
            while(head < rear && !isOnLeft(L[i], p[head])) head++;
            q[++rear] = L[i];
            if (fabs(Cross(q[rear].dir, q[rear-1].dir)) < eps) {    //两向量平行且同向,取内侧的一个
                rear--;
                if (isOnLeft(q[rear], L[i].P)) q[rear] = L[i];
            }
            if (head < rear) p[rear-1] = GetLineIntersection(q[rear-1], q[rear]);
        }
        while(head < rear && !isOnLeft(q[head], p[rear-1])) rear--; //删除无用平面
        if (rear - head <= 1) return ans;   //空集
        p[rear] = GetLineIntersection(q[rear], q[head]);    //计算首尾两个半平面的交点
    
        for(int i = head; i <= rear; i++) //从deque复制到输出中
            ans.push_back(p[i]);
        return ans;
    }
    Point a[maxn];
    Vector e;
    vector<Line> L;
    Polygon p;
    int main() {
        int n;
        double r;
        scanf("%d%lf", &n, &r);
        for(int i=0;i<n;i++) cin>>a[i];
        for(int i=0;i<n;i++){
            e = Normal(a[i]-a[(i+1)%n]);
            L.push_back(Line(a[(i+1)%n]+e*r, a[i]-a[(i+1)%n]));
        }
        p = HalfPlaneIntersection(L);
        int ans1 = 0, ans2 = 0, num = p.size();
        for(int i=0;i<num;i++){
            for(int j=i;j<num;j++){
                if(Length(p[i]-p[j]) > Length(p[ans1]-p[ans2]))
                    ans1 = i, ans2 = j;
            }
        }
        printf("%f %f %f %f
    ", p[ans1].x, p[ans1].y, p[ans2].x, p[ans2].y);
        return 0;
    }
    /*
    4 1
    0 0
    0 2
    3 2
    3 0
    
    
    
    */
  • 相关阅读:
    kibana We couldn't activate monitoring
    学Redis这篇就够了!
    elasticsearch 官方监控文档 老版但很有用
    java dump 内存分析 elasticsearch Bulk异常引发的Elasticsearch内存泄漏
    Apache Beam实战指南 | 大数据管道(pipeline)设计及实践
    InnoDB一棵B+树可以存放多少行数据?
    函数编程真不好
    面向对象编程灾难
    可能是全网最好的MySQL重要知识点 | 面试必备
    终于有人把elasticsearch原理讲通了
  • 原文地址:https://www.cnblogs.com/Noevon/p/8399163.html
Copyright © 2011-2022 走看看