zoukankan      html  css  js  c++  java
  • 51nod1674 区间的价值

    题意:输入一个序列,区间的价值定义为这个区间的所有数&乘以所有数|,问所有区间的价值为多少?

    题解:这里要知道,f1(1, j) = and(a[1], a[2]... a[j])随着j增大f(i, j)的1个数会减少或不变,所以最后f的值最多只有log(n)个

    分治算答案.对于一个区间,左右分治,再计算跨越mid的区间的价值,右边的值最多有log(len)个那么可以分块计算答案,复杂度n*logn*logn

    #include <bits/stdc++.h>
    #define maxn 101000
    #define INF 0x3f3f3f3f
    typedef long long ll;
    using namespace std;
    const ll mod = 1e9+7;
    int aor[maxn], aand[maxn], num[maxn], a[maxn];
    ll f(int l,int r){
        if(l == r) return (ll)a[l]*a[l];
        int mid = (l+r)>>1;
        ll ans = 0;
        ans = (ans+f(l, mid)+f(mid+1, r))%mod;
        int n = 1;
        num[n] = 1;
        aor[n] = aand[n] = a[mid+1];
        for(int i=mid+2;i<=r;i++){
            if(((aor[n]|a[i]) != aor[n])||((aand[n]&a[i]) != aand[n])){
                n++;
                aor[n] = aor[n-1]|a[i];
                aand[n] = aand[n-1]&a[i];
                num[n] = 1;
            }
            else num[n]++;
        }
        int t1 = a[mid], t2 = a[mid];
        for(int i=mid;i>=l;i--){
            t1 &= a[i], t2 |= a[i];
            for(int j=1;j<=n;j++)
                ans = (ans+(ll)(t1&aand[j])*num[j]%mod*(t2|aor[j])%mod)%mod;
        }
        return (ans+mod)%mod;
    }
    int main(){
        int n;
        scanf("%d", &n);
        for(ll i=1;i<=n;i++)
            scanf("%d", &a[i]);
        printf("%lld
    ", f(1, n));
        return 0;
    }
  • 相关阅读:
    MySQL源码编译与初始化
    Nginx基础优化
    企业级NginxWeb服务优化实战(下)
    企业级NginxWeb服务优化实战(上)
    Nginx+Keepalived高可用集群应用实践
    bzoj 2141: 排队
    zoj 2112 Dynamic Rankings
    bzoj 3196: Tyvj 1730 二逼平衡树
    bzoj 4004: [JLOI2015]装备购买
    bzoj 2300: [HAOI2011]防线修建
  • 原文地址:https://www.cnblogs.com/Noevon/p/8568866.html
Copyright © 2011-2022 走看看