zoukankan      html  css  js  c++  java
  • CodeForces1238DABstring CodeForces思维+字符串反向思考

    The string t1t2tkt1t2…tk is good if each letter of this string belongs to at least one palindrome of length greater than 1.

    A palindrome is a string that reads the same backward as forward. For example, the strings A, BAB, ABBA, BAABBBAAB are palindromes, but the strings AB, ABBBAA, BBBA are not.

    Here are some examples of good strings:

    • tt = AABBB (letters t1t1, t2t2 belong to palindrome t1t2t1…t2 and letters t3t3, t4t4, t5t5 belong to palindrome t3t5t3…t5);
    • tt = ABAA (letters t1t1, t2t2, t3t3 belong to palindrome t1t3t1…t3 and letter t4t4 belongs to palindrome t3t4t3…t4);
    • tt = AAAAA (all letters belong to palindrome t1t5t1…t5);

    You are given a string ss of length nn, consisting of only letters A and B.

    You have to calculate the number of good substrings of string ss.

    Input

    The first line contains one integer nn (1n31051≤n≤3⋅105) — the length of the string ss.

    The second line contains the string ss, consisting of letters A and B.

    Output

    Print one integer — the number of good substrings of string ss.

    Examples

    Input
    5
    AABBB
    
    Output
    6
    
    Input
    3
    AAA
    
    Output
    3
    
    Input
    7
    AAABABB
    
    Output
    15
    

    Note

    In the first test case there are six good substrings: s1s2s1…s2, s1s4s1…s4, s1s5s1…s5, s3s4s3…s4, s3s5s3…s5 and s4s5s4…s5.

    In the second test case there are three good substrings: s1s2s1…s2, s1s3s1…s3 and s2s3s2…s3.

     1 #include<stdio.h>
     2 #include<string.h>
     3 const int N=300020;
     4 typedef long long ll;
     5 
     6 char a[N],b[N];
     7 
     8 int main()
     9 {
    10     ll n;
    11     while(~scanf("%lld",&n))
    12     {
    13         scanf("%s",a);
    14         ll sum1=0,sum2=0,ss=0;
    15         int k1=0,k2=0;
    16         for(int i=1;i<n;i++)
    17         {
    18             if(a[i]!=a[i-1])
    19             {
    20                 ss++;
    21                 sum1=sum1+i-k1;
    22                 k1=i;
    23             }
    24         }
    25 
    26         int p=0;
    27         for(int i=n-1;i>=0;i--)
    28             b[p++]=a[i];
    29         for(int i=0;i<p;i++)
    30         {
    31             if(b[i]!=b[i-1])
    32             {
    33                 sum2=sum2+i-k2;
    34                 k2=i;
    35             }
    36         }
    37         ll w=n*(n-1)/2-sum1-sum2+ss;
    38         printf("%lld\n",w);
    39     }
    40     return 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
    41 }
  • 相关阅读:
    koa学习
    nodejs工作大全
    《程序员周先生之前端开发面试题》
    使用vue技术应当使用的技术和兼容性选择
    IdentityServer4简单入门demo系列 (一)认证服务端
    IdentityServer4客户端获取Token的方法
    wpf 右键菜单的使用
    wpf 在用户控件里,关掉父级窗口
    EntityFramework集成Sqlite的详细步骤
    wpf DataGrid 里的列模版的值绑定
  • 原文地址:https://www.cnblogs.com/OFSHK/p/11695387.html
Copyright © 2011-2022 走看看