zoukankan      html  css  js  c++  java
  • 寒假Day17UVALive3231Fair Share(最大流+二分)

    You are given N processors and M jobs to be processed. Two processors are specified to each job. To process the job, the job should be allocated to and executed on one of the two processors for one unit of time. If K jobs are allocated to a processor, then it takes K units of time for the processor to complete the jobs. To complete all the jobs as early as possible, you should allocate the M jobs to the N processors as fair as possible. Precisely speaking, you should minimize the maximum number of jobs allocated to each processor over all processors. The quantity, minimum number of jobs, is called fair share. For example, you are given 5 processors and 6 jobs. Each job can be allocated to one of the two processors as shown in the table below. Job 1 can be allocated to processors 1 or 2, and job 2 can be allocated to processors 2 or 3, etc. If you allocate job 1 to processor 1, job 2 to processor 2, job 3 to processor 3, job 4 to processor 4, job 5 to processor 5, and job 6 to processor 1, then you have at most two jobs allocated to each processor. Since there are more jobs than processors in this example, some processors necessarily have at least two jobs, and thus the fair share is two.

     Given N processors, M jobs, and the sets of two processors to which the jobs can be allocated, you are to write a program that finds the fair share. Processors are numbered from 1 to N and jobs are numbered from 1 to M . It is assumed that the sets of two processors to which the jobs can be allocated are distinct over all jobs. That is, if a job J1 can be allocated to processors P1 or P2, and a job J2 which is different from J1 can be allocated to processors P3 or P4, then {P1, P2} ̸= {P3, P4}. Input The input consists of T test cases. The number of test cases T is given in the first line of the input file. Each test case begins with a line containing an integer N, 1 ≤ N ≤ 1, 000, that represents the number of processors in the test case. It is followed by a line containing an integer M, 1 ≤ M ≤ 10, 000, that represents the number of jobs. In the following M lines, K-th line contains two distinct integers representing processors to which job K can be allocated, 1 ≤ K ≤ M. The integers given in a line are separated by a space. After that, the remaining test cases are listed in the same manner as the above. Output Print exactly one line for each test case. The line should contain the fair share for that test case.

    样例:

    Sample Input
    3
    5
    6
    1 2
    2 3
    3 4
    4 5
    5 1
    1 3
    3
    2
    3 2
    1 2
    6
    6
    1 2
    3 4
    4 6
    6 5
    5 3
    6 3
    
    Sample Output
    2
    1
    2

    思路:最大流+二分,不好写

    AC代码:(dfs+bfs+dinic)

      1 #include<string.h>
      2 #include<iostream>
      3 #include<stdio.h>
      4 #include<algorithm>
      5 #include<queue>
      6 #include<vector>
      7 #include<map>
      8 #include<cmath>
      9 using namespace std;
     10 #define inf 0x3f3f3f3f
     11 const int N=20020;
     12 typedef long long ll;
     13 
     14 int a[10020],b[10020],n,m,s,t,tot;
     15 int head[N],dep[N],cur[N];
     16 
     17 struct node
     18 {
     19     // int u,v,flow;
     20     int nextt,v,flow;
     21 } e[100*N];
     22 
     23 void add(int u,int v,int flow)//v,u,0
     24 {
     25     tot++;
     26     //nextt[tot]=head[u];
     27     e[tot].nextt=head[u];
     28     head[u]=tot;
     29     // e[tot].u=u;
     30     e[tot].v=v;
     31     e[tot].flow=flow;
     32 
     33     tot++;
     34     // nextt[tot]=head[v];
     35     e[tot].nextt=head[v];
     36     head[v]=tot;
     37     //e[tot].u=v;
     38     e[tot].v=u;
     39     e[tot].flow=0;
     40 }
     41 
     42 int dfs(int u,int flow)
     43 {
     44     if(u==t)
     45         return flow;
     46 //    int used=0;
     47     for(int& i=cur[u]; i!=-1; i=e[i].nextt) //注意这里的&符号,这样i增加的同时也能改变cur[u]的值,达到记录当前弧的目的
     48     {
     49         if ((dep[e[i].v]==dep[u]+1)&&e[i].flow!=0)
     50         {
     51             // int di=dfs(e[i].v,min(flow-used,e[i].flow));
     52             int di=dfs(e[i].v,min(flow,e[i].flow));
     53             if (di>0)
     54             {
     55                 e[i].flow-=di;
     56                 e[i^1].flow+=di;
     57                 // used+=di;
     58 //                if(used==flow)
     59 //                    break;
     60                 return di;
     61             }
     62         }
     63     }
     64 //    if(used!=flow)
     65 //        dep[u]=-1;
     66 //    return used;
     67     return 0;
     68 }
     69 
     70 int bfs()
     71 {
     72     queue<int>Q;
     73     memset(dep,-1,sizeof(dep));
     74     dep[s]=1;
     75     Q.push(s);
     76     while(!Q.empty())
     77     {
     78         int u=Q.front();
     79         Q.pop();
     80         for (int i=head[u]; i!=-1; i=e[i].nextt)
     81         {
     82             if ((dep[e[i].v]==-1)&&(e[i].flow>0))
     83             {
     84                 dep[e[i].v]=dep[u]+1;
     85                 Q.push(e[i].v);
     86             }
     87         }
     88     }
     89     if(dep[t]!=-1)
     90         return 1;
     91     return 0;
     92 }
     93 
     94 int dinic()
     95 {
     96     int sum=0;
     97     while(bfs())
     98     {
     99         for(int i=s; i<=t; i++)
    100             cur[i]=head[i];
    101         while(int di=dfs(s,inf))
    102             sum+=di;
    103 //        while (dfs(s,inf))
    104 //                sum+=dfs(s,inf);
    105     }
    106     return sum;
    107 }
    108 
    109 int main()
    110 {
    111     int tt;
    112     scanf("%d",&tt);
    113     while(tt--)
    114     {
    115         scanf("%d %d",&n,&m);//n处理器1000  m任务10000
    116         for(int i=1; i<=m; i++)
    117             scanf("%d %d",&a[i],&b[i]);
    118         int l=0,r=inf,ans;
    119         s=0,t=n+m+1;
    120         while(l<=r)
    121         {
    122             tot=-1;
    123             memset(head,-1,sizeof(head));
    124             int mid=(l+r)/2,M=0;
    125             for(int i=1; i<=m; i++)
    126             {
    127                 add(s,i,1);
    128                 add(i,a[i]+m,1);
    129                 add(i,b[i]+m,1);
    130             }
    131             for(int i=1; i<=n; i++) //处理器到汇点t
    132                 add(i+m,t,mid);
    133             M+=dinic();
    134             if(M>=m)
    135                 r=mid-1,ans=mid;
    136             else
    137                 l=mid+1;
    138         }
    139         printf("%d\n",ans);
    140     }
    141     return 0;
    142 }
    View Code
  • 相关阅读:
    数字建模工具
    博客园文档保存为pdf适合手机kindle阅读
    单点登录sso规范
    office在线预览方案
    KVM 虚机怎么热添加disk
    linux-基础FTP 协议传输
    TCP 三次握手四次挥手
    autossh 实现反向代理实现通过外网访问内网环境
    keepalived的工作原理
    openstack-ovs命令记录
  • 原文地址:https://www.cnblogs.com/OFSHK/p/12250661.html
Copyright © 2011-2022 走看看