zoukankan      html  css  js  c++  java
  • 快速乘+快速幂 板子 zhx's contest

    As one of the most powerful brushes, zhx is required to give his juniors nn problems.
    zhx thinks the ithith problem's difficulty is ii. He wants to arrange these problems in a beautiful way.
    zhx defines a sequence {ai}{ai} beautiful if there is an ii that matches two rules below:
    1: a1..aia1..ai are monotone decreasing or monotone increasing.
    2: ai..anai..an are monotone decreasing or monotone increasing.
    He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
    zhx knows that the answer may be very huge, and you only need to tell him the answer module pp.

    InputMultiply test cases(less than 10001000). Seek EOFEOF as the end of the file.
    For each case, there are two integers nn and pp separated by a space in a line. (1n,p10181≤n,p≤1018)
    OutputFor each test case, output a single line indicating the answer.
    Sample Input

    2 233
    3 5

    Sample Output

    2
    1
    
    
            
     

    Hint

    In the first case, both sequence {1, 2} and {2, 1} are legal.
    In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1
            


    思路:
    标志为 最大最小值 (想到了图像)
    所以对于每一个标志 你需要选一些数在 左成为单调 的 右边一定可以成为单调的且方案数为1
    所以答案 为 sigema (1->n-1) C(i)(n-1)
    通过杨辉三角推出 通项公式为 2^n-2;

    板子 (快速乘 板子 和快速幂板子有异曲同工之妙
    // 
    #include<bits/stdc++.h> 
    using namespace std; 
    #define ll long long 
    ll n,p; 
    #define maxnn 100100 
    ll ksc(ll a,ll b,ll c)
    {
        a=a%c;
        ll ans=0;
        while(b)
        {
            if(b&1) ans=(ans+a)%c;
            b>>=1;
            a=(a+a)%c;
        }
        return ans;
    }
    ll ksm(ll a,ll b,ll c)
    {
        a=a%c;
        ll ans=1;
        while(b)
        {
            if(b&1) ans=ksc(ans,a,c)%c;
            b>>=1;
            a=ksc(a,a,c)%c;
        }
        return ans;
    }
    int main()
    {
        while(cin>>n)
        {
            cin>>p;
            printf("%lld
    ",(ksm(2,n,p)-2+p)%p);
        }
    }
    刀剑映出了战士的心。而我的心,漆黑且残破
  • 相关阅读:
    LR和SVM的相同和不同
    Logistic Regression理论总结
    LibSVM源码剖析(java版)
    CTR预估中的贝叶斯平滑方法(二)参数估计和代码实现
    支持向量机(SVM)中的 SMO算法
    《这就是搜索引擎》框架图
    Leetcode 初刷(1)
    tf中softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits
    python 判断是否为中文
    sklearn使用小记GridSearchCV
  • 原文地址:https://www.cnblogs.com/OIEREDSION/p/11291717.html
Copyright © 2011-2022 走看看