zoukankan      html  css  js  c++  java
  • 金明的预算方案

    原题链接:https://www.luogu.org/problem/show?pid=1064

    带有附件的背包问题,它属于01背包的变式。

    这题还好,每一个物品最多只有两个附件,那么我们在对主件进行背包的时候,决策就不再是两个了,而是五个。

    还记得01背包的决策是什么吗?

    1.不选,然后去考虑下一个

    2.选,背包容量减掉那个重量,总值加上那个价值。

    这个题的决策是五个,分别是:

    1.不选,然后去考虑下一个

    2.选且只选这个主件

    3.选这个主件,并且选附件1

    4.选这个主件,并且选附件2

    5.选这个主件,并且选附件1和附件2.

    这个。。。很好想吧。。。

    我们知道,01背包的状态转移方程(已进行滚动数组优化)是f[j] = max(f[j],f[j-w[i]]+c[i]),那么,这道题的转移方程也就不难写出了。

    等等,你得先判断某个选附件的决策是不是可行的,如果当前的容量还够放第一个,或第二个,或两个都选的附件,那么才能考虑转移。

    当然,不选附件的话就不用判啦,直接01背包的转移方程即可。

    我们令main_item_w数组表示某个主件的费用,而main_item_c数组表示某个主件的价值。

    同样的,用二维数组annex_item_w表示某个附件的费用,annex_item_c表示某个附件的价值,第二维只需要0,1,2这三个数,其中第二维是0的场合表示这个主件i的附件数量,它只能等于0或1或2。第二维是1或者是2的值代表以i为主件的附件1或者附件2的相关信息(费用 价值)。这些数组的信息应该在读入时处理好,具体详见代码。

    这样,状态转移方程就是四个。

    不选附件的①:f[j] = max(f[j],f[j-main_item_w[i]]+main_item_c[i]);

    选附件1的②:f[j] = max(f[j],f[ j - main_item_w[i] - annex_item_w[i][1] ] + main_item_c[i] + annex_item_c[i][1]);

    选附件2的③:f[j] = max(f[j],f[ j - main_item_w[i] - annex_item_w[i][2] ] + main_item_c[i] + annex_item_c[i][2]);

    选附件1和附件2的④:f[j] = max(f[j],f[ j - main_item_w[i] - annex_item_w[i][1] - annex_item_w[i][2] ] + main_item_c[i] + annex_item_c[i][1] + annex_item_c[i][2]);

    已经滚动掉了第一维,道理和正常向的01背包都是一样的,即只有i和i-1有关系,但是这个规律在循环中已经满足了所以完全没必要记录。

    目标状态f[n],输出就好。

    参考代码:

     1 #include <iostream>
     2 #define maxn 32005
     3 using namespace std;
     4 int n,m;
     5 int v,p,q;
     6 int main_item_w[maxn];
     7 int main_item_c[maxn];
     8 int annex_item_w[maxn][3];
     9 int annex_item_c[maxn][3];
    10 int f[maxn];
    11 int main(){
    12     cin >> n >> m;
    13     for (int i=1;i<=m;i++){
    14         cin >> v >> p >> q;
    15         if (!q){
    16             main_item_w[i] = v;
    17             main_item_c[i] = v * p;
    18         }
    19         else{
    20             annex_item_w[q][0]++;
    21             annex_item_w[q][annex_item_w[q][0]] = v;
    22             annex_item_c[q][annex_item_w[q][0]] = v * p;
    23         }
    24     }
    25 
    26     for (int i=1;i<=m;i++)
    27         for (int j=n;main_item_w[i]!=0 && j>=main_item_w[i];j--){
    28             f[j] = max(f[j],f[j-main_item_w[i]]+main_item_c[i]);
    29 
    30             if (j >= main_item_w[i] + annex_item_w[i][1])
    31                 f[j] = max(f[j],f[ j - main_item_w[i] - annex_item_w[i][1] ] + main_item_c[i] + annex_item_c[i][1]);
    32 
    33             if (j >= main_item_w[i] + annex_item_w[i][2])
    34                 f[j] = max(f[j],f[ j - main_item_w[i] - annex_item_w[i][2] ] + main_item_c[i] + annex_item_c[i][2]);
    35 
    36             if (j >= main_item_w[i] + annex_item_w[i][1] + annex_item_w[i][2])
    37                 f[j] = max(f[j],f[ j - main_item_w[i] - annex_item_w[i][1] - annex_item_w[i][2] ] + main_item_c[i] + annex_item_c[i][1] + annex_item_c[i][2]);
    38 
    39          }
    40      cout << f[n] << endl;
    41      return 0;
    42 }
  • 相关阅读:
    JavaScript--Promise(1)
    JavaScript--创建对象
    JavaScript--JSON
    JavaScript--generator
    JavaScript--闭包(1)
    JavaScript--sort()
    JavaScript--filter()
    JavaScript--map()&reduce()
    JavaScript--map&set
    3.11
  • 原文地址:https://www.cnblogs.com/OIerShawnZhou/p/7599615.html
Copyright © 2011-2022 走看看