zoukankan      html  css  js  c++  java
  • CDH SparkOnYarn执行中executor内存限制问题

    因为配置了spark如下参数,启动spark-shell报错

    export SPARK_WORKER_CORES=5

    export SPARK_WORKER_INSTANCES=4

    export SPARK_WORKER_MEMORY=50G

    export SPARK_WORKER_WEBUI_PORT=8081

    export SPARK_EXECUTOR_CORES=2

    export SPARK_EXECUTOR_MEMORY=20G

     

     

    15/07/07 15:52:47 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (8192 MB per container)

    java.lang.IllegalArgumentException: Required executor memory (20480+1433 MB) is above the max threshold (8192 MB) of this cluster!

            at org.apache.spark.deploy.yarn.Client.verifyClusterResources(Client.scala:162)

    查看在cloudera的管理控制台查看yarn的配置(修改之前是8,改为32)

    同时更改下nodemanager的最大内存(修改之前是8,改为24)

     

    另外,因为任务是提交到YARN上运行的,所以YARN中有几个关键参数,参考YARN的内存和CPU配置:

    yarn.app.mapreduce.am.resource.mb :AM能够申请的最大内存,默认值为1536MB

    yarn.nodemanager.resource.memory-mb :nodemanager能够申请的最大内存,默认值为8192MB

    yarn.scheduler.minimum-allocation-mb :调度时一个container能够申请的最小资源,默认值为1024MB

    yarn.scheduler.maximum-allocation-mb :调度时一个container能够申请的最大资源,默认值为8192MB

     

     

    Spark On YARN内存分配:

    http://www.tuicool.com/articles/YVFVRf3

     

    http://www.sjsjw.com/107/001051MYM028913/

     

  • 相关阅读:
    Linux
    python 鸢尾花数据集报表展示
    python 词云
    毕业设计回顾
    editor.md
    杂记
    垃圾回收器
    杂记
    随笔
    杂记
  • 原文地址:https://www.cnblogs.com/OS-BigData/p/8527843.html
Copyright © 2011-2022 走看看