zoukankan      html  css  js  c++  java
  • Geometry

    uva1473 这题说的是 在空间中给了n个点 然后用体积最小的圆锥将这些点包含在内可以在表面上, 将这些点 映射到xoz平面上然后,然后枚举每个上凸包的边和每个点的极值进行判断求得最小的体积 我们会发现最小的体积 要不就紧贴一个点要不然就会贴住两个点

    #include <iostream>
    #include <cstdio>
    #include <string.h>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    const double INF =1.79769e+308;
    const double eps = 0.000000000001;
    int dcmp(double a)
    {
         if(fabs(a)<=eps) return 0;
         return a>0?1:-1;
    }
    struct point {
       double x,y;
       point(double a=0, double b=0){
           x=a; y=b;
       }
       point operator -(point A){
         return point(x-A.x, y-A.y);
       }
       bool operator <(point A)const{
          return dcmp(x-A.x)<0||(dcmp(x-A.x)==0&&dcmp(y-A.y)<=0);
       }
    }P[10005],ch[10005];
    int n;
    double Cross(point A, point B)
    {
         return A.x*B.y-A.y*B.x;
    }
    int Conxtull(int &G)
    {
        sort(P,P+n);
        int m=0;
        for(int i =0; i<n ; ++i )
        {
            while(m>1&&dcmp( Cross( ( ch[m-1] - ch[m-2] ), ( P[i] - ch[m-2] ) ) )<=0)m--;
            ch[ m++ ] = P[i];
        }
        int k = m;
        for(int i = n-2; i>=0; --i )
            {
                 while( k<m&&dcmp( Cross( ch[m-1]-ch[m-2], P[i]-ch[m-2] ) )<=0 ) m--;
                  ch[m++] = P[i] ;
            }
            if(n>1)m--;
            G=m;
            return k-1;
    }
    point getpoint(double k,point F)
    {
          point ans;
          ans.x = F.x+(F.y/k);
          ans.y = F.y+k*F.x;
          return ans;
    }
    double Volun(double radio, double hight)
    {
          return  acos(-1)*radio*radio*hight/3.0;
    }
    double Volume,ansR,ansH;
    void solve(double k,point T)
    {
           point e = getpoint(k,T);
           double V =Volun(e.x,e.y);
           if(dcmp(Volume-V)>0){
              ansR=e.x; ansH=e.y;
              Volume=V;
           }
    }
    int main()
    {
          freopen("data.in","r",stdin);
          freopen("data.out","w",stdout);
         while(scanf("%d",&n)==1)
            {
                n++;
                 double Minx=0.0;
                 P[0]=point(0,0);
                   for(int i =1 ; i<n; ++i)
                    {
                         double x,y,z;
                         scanf("%lf%lf%lf",&x,&y,&z);
                         P[i].x=sqrt(x*x+y*y);
                         P[i].y=z;
                         Minx = max(Minx,P[i].x);
                    }
                    int m;
                    int k =Conxtull(m);
                    ch[m]=ch[0];
                    Volume=INF;
                    double K=INF;
                    int we;
                    for(int i=k; i<m; ++i )
                    {
                         if(i==m-1||dcmp(ch[i].x-ch[i+1].x)<=0||dcmp(ch[i].y-ch[i+1].y)>=0)
                         {
                                we=i;
                                break;
                         }
                         double R =(ch[i+1].y-ch[i].y)/(ch[i].x-ch[i+1].x);
                         double t =ch[i].y*2;
                         t/=ch[i].x;
                         int f1 =dcmp(t-R);
                         int f2=dcmp(t-K);
                         if(f1>=0&&f2<=0)
                           solve(t,ch[i]);
                          solve(R,ch[i]);
                          K=R;
                    }
                    double t = 2.0*ch[we].y/ch[we].x;
                    if(dcmp(t-K)<0)
                        solve(t,ch[we]);
                    printf("%.3lf %.3lf
    ",ansH,ansR);
            }
    
         return 0;
    }
    View Code

    uva 12165 这题说的是  用梅涅劳斯 计算图中三角形的对应的比例列出一堆后 开始拆分那些边然后化简就会达到所要的公式

    #include <iostream>
    #include <string.h>
    #include <cmath>
    #include <cstdio>
    using namespace std;
    struct point{
        double  x,y;
        point(double a=0,double b=0){
           x=a; y =b;
        }
        point operator +(point A){
           return point(x+A.x,y+A.y);
        }
        point operator -(point A){
             return point(x-A.x,y-A.y);
        }
        point operator *(double  A){
              return point(x*A,y*A);
        }
    };
    double Cross(point A,point B){
       return A.x*B.y-A.y*B.x;
    }
    double Dot(point A,point B){
       return A.x*B.x+A.y*B.y;
    }
    double Length(point A){
       return sqrt(Dot(A,A));
    }
    int main()
    {
    
          double m1,m2,m3,m4,m5,m6;
          point P,Q,R;
          int cas;
          scanf("%d",&cas);
          for(int cc=1; cc<=cas; ++cc){
    
               scanf("%lf%lf%lf%lf%lf%lf",&P.x,&P.y,&Q.x,&Q.y,&R.x,&R.y);
               scanf("%lf%lf%lf%lf%lf%lf",&m1,&m2,&m3,&m4,&m5,&m6);
               double c =Length(P-Q),a =Length(R-Q), b =Length(P-R);
               double m = m3*m5/(m6*(m3+m4));
               double n = m4*m2/((m3+m4)*m1);
               double BP = (c+m*c)/(n-m);
               m = (m5*m1)/((m5+m6)*m2);
               n = m6*m4/((m5+m6)*m3);
               double CQ = (m*a+a)/(n-m);
               m = m1*m3/((m1+m2)*m4);
               n =m2*m6/((m1+m2)*m5);
               double AR = (m*b+b)/(n-m);
               point PR = (R-P)*(1/Length(R-P));
               point A = R +(PR*AR);
               point QP = (P-Q)*(1/Length(P-Q));
               point B = P+(QP*BP);
               point RQ = (Q-R)*(1/Length(Q-R));
               point C = Q+(RQ*CQ);
               printf("%.8lf %.8lf %.8lf %.8lf %.8lf %.8lf
    ",A.x,A.y,B.x,B.y,C.x,C.y);
         }
    
          return 0;
    }
    View Code

  • 相关阅读:
    JQ轮播
    JS中正则匹配的三个方法match exec test的用法
    JavaScript 表单验证
    JS 控制CSS样式表
    AJAX 的简单用法:
    shell之运用sed将其值存到变量
    shell之创建文件及内容
    修复vbox的共享文件夹的符号链接错误
    字符转码
    php魔术方法
  • 原文地址:https://www.cnblogs.com/Opaser/p/3869155.html
Copyright © 2011-2022 走看看