zoukankan      html  css  js  c++  java
  • Codeforces 260

    A

    Problem description

    给出数a,b,n,在a后加上1个数,并使加后的数是b的倍数.输出操作n次后的数.

    Data Limit:1 ≤ a, b, n ≤ 105  Time Limit: 1s

    Solution

    易得只要第一次成功,剩下加0,就可以了

    Code

    #include<cstdio>
    long long a,b,n,i,j;
    long long ans[500000];bool bo=false;
    int main()
    {
        scanf("%lld%lld%lld",&a,&b,&n);//a=a%b;
        for (i=0;i<=9;i++)
        {
            if ((a*10+i)%b==0)
            {
                a=a*10+i;bo=true;
                break;
            }
        }
        if (bo)
        {
            printf("%lld",a);
        for (i=1;i<=n-1;i++)printf("%d",0);
        }else printf("%d",-1);
        return 0;
    }

    B

    Problem description

    输入=一个字符串,输出出现最多的合法日期.

    Data Limit:|s|<=10e5  Time Limit: 1s

    Solution

    暴力枚举每10个连续字符,判断是否是合法日期并计数即可.

    Code

    var
      s,t:ansistring;
      n,i,j,d,m,y,k,max:longint;
      a:array[1..31,1..12,2013..2015]of longint;
      day:array[1..12] of longint;
    begin
      readln(s);
      day[1]:=31;
      day[2]:=28;
      day[3]:=31;
      day[4]:=30;
      day[5]:=31;
      day[6]:=30;
      day[7]:=31;
      day[8]:=31;
      day[9]:=30;
      day[10]:=31;
      day[11]:=30;
      day[12]:=31;
      max:=-10;
      for i:=1 to length(s) do
      if (s[i]='-')and(s[i+3]='-')and((s[i-2]<='9')and(s[i-2]>='0'))
      and((s[i-1]<='9')and(s[i-1]>='0'))and((s[i+1]<='9')and(s[i+1]>='0'))
      and((s[i+2]<='9')and(s[i+2]>='0'))and((s[i+4]<='9')and(s[i+4]>='0'))
      and((s[i+5]<='9')and(s[i+5]>='0'))and((s[i+6]<='9')and(s[i+6]>='0'))
      and((s[i+7]<='9')and(s[i+7]>='0'))then
      begin
        d:=(ord(s[i-2])-48)*10+ord(s[i-1])-48;
        m:=(ord(s[i+1])-48)*10+ord(s[i+2])-48;
        y:=(ord(s[i+4])-48)*1000+(ord(s[i+5])-48)*100+(ord(s[i+6])-48)*10+ord(s[i+7])-48;
        if (y<=2015)and(y>=2013)and(m<=12)and(m>=1) then
        if (d>=1)and(d<=day[m]) then
        begin
          inc(a[d,m,y]);
        end;
      end;
      for i:=1 to 31 do
        for j:=1 to 12 do
          for k:=2013 to 2015 do
          if a[i,j,k]>max then
          begin
            max:=a[i,j,k];
            d:=i;m:=j;y:=k;
          end;
      if d<10 then write('0',d) else write(d);
       write('-');
      if m<10 then write('0',m) else write(m);
      write('-');
      writeln(y);
    end.

    C

    Problem description

    有n个箱子,进行一次操作,把一个箱子的球拿出来,然后放到后面的箱子里,每个箱子放一个,直到取的球放完. 若放到了第n个箱子,下一个放第1个箱子.给出操作后的情况和最后放球的箱子,求出原来的情况.

    Data Limit:2 ≤ n ≤ 105  Time Limit: 1s

    Solution

    现在球数最少的的箱子,这就是原来选的箱子,然后就可以求出原来的样子啦.

    Code

    #include<cstdio>
    long long n,i,j,x,min=1e18,ans=0;
    long long a[500000];
    int main()
    {
        scanf("%lld%lld",&n,&x);
        for (i=1;i<=n;i++)
        {
            scanf("%lld",&a[i]);
            if (a[i]<min)min=a[i];
        }
        if (min>0)min--;
        for (i=1;i<=n;i++)a[i]=a[i]-min;
        while (a[x]>0)
        {
            ans++;a[x]--;x--;
            if (x==0)x=n;
        }
        a[x]=min*n+ans;
        for (i=1;i<=n;i++)printf("%lld ",a[i]);
        return 0;
    }

    D

    Problem description

    给出n个点的颜色(黑或白)和权值(所有与其相连的边的权值和)求出原来的树.

    Data Limit:n <= 1e5  Time Limit: 1s

    Solution

    贪心,每次枚举两个点,连权值最大的边即可.

    Code

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    long long  n,i,j,t,topb,topw,ans[2000000][4],topa;
    bool bo=false;
    struct point
    {
        long long a,sum;
    };
    bool bbb(point x,point y)
    {
        return x.sum>y.sum;
    }
    point black[2000000],white[2000000];
    int main()
    {
        scanf("%lld",&n);
        for (i=1;i<=n;i++)
        {
            scanf("%lld",&t);
            if (t==0)
            {
                topw++;
                scanf("%lld",&white[topw].sum);
                white[topw].a=i;
            }else
            {
                topb++;
                scanf("%lld",&black[topb].sum);
                black[topb].a=i;
            }
        }
        i=1;j=1;topa=0;
        while ((i<=topb)&&(j<=topw))
        {
            topa++;
            ans[topa][1]=black[i].a;
            ans[topa][2]=white[j].a;
            
            t=min(white[j].sum,black[i].sum);
            ans[topa][3]=t;
            white[j].sum-=t;black[i].sum-=t;
            if (black[i].sum) j++;  
            else if(white[j].sum) i++;  
            else if(i<topb) i++;  
            else j++;  
        }
        for (i=1;i<=n-1;i++)
        printf("%lld %lld %lld
    ",ans[i][1],ans[i][2],ans[i][3]);
        return 0;
    }

    E

    Problem description

    给出一个平面上的n个点,用两条平行于x轴的直线和两条平行于y轴的直线把平面分成9块 使每个块中的点符合给出的要求.

    Data Limit:9 ≤ n ≤ 10^5 Time Limit:2s

    Solution

    先全排列出每个块的点数然后用线段树求出能否满足题意

    Code

    #include<iostream>    
    #include<cstdio>    
    #include<map>    
    #include<cstring>    
    #include<cmath>    
    #include<vector>    
    #include<algorithm>    
    #include<set>    
    #include<string>    
    #include<queue>    
    #define inf 1000000005    
    #define M 40    
    #define N 100005  
    #define maxn 300005    
    #define eps 1e-12  
    #define zero(a) fabs(a)<eps    
    #define Min(a,b) ((a)<(b)?(a):(b))    
    #define Max(a,b) ((a)>(b)?(a):(b))    
    #define pb(a) push_back(a)    
    #define mp(a,b) make_pair(a,b)    
    #define mem(a,b) memset(a,b,sizeof(a))    
    #define LL long long    
    #define MOD 1000000007  
    #define lson step<<1  
    #define rson step<<1|1  
    #define sqr(a) ((a)*(a))    
    #define Key_value ch[ch[root][1]][0]    
    #define test puts("OK");    
    #define pi acos(-1.0)  
    #define lowbit(x) ((-(x))&(x))  
    #define HASH1 1331  
    #define HASH2 10001  
    #pragma comment(linker, "/STACK:1024000000,1024000000")    
    using namespace std;  
    struct Set_tree{  
        int left,right;  
        vector<int>v;  
    }L[N*4];  
    struct Point{  
        int x,y;  
        bool operator<(const Point n)const{  
            return x!=n.x?x<n.x:y<n.y;  
        }  
    }p[N];  
    int n,x[N],y[N];  
    int a[9],b[9];  
    double ret_x1,ret_x2,ret_y1,ret_y2;  
    void Bulid(int step,int l,int r){  
        L[step].left=l;  
        L[step].right=r;  
        L[step].v.clear();  
        for(int i=l;i<=r;i++)  
            L[step].v.pb(p[i].y);  
        sort(L[step].v.begin(),L[step].v.end());  
        if(l==r)  
            return;  
        int m=(l+r)>>1;  
        Bulid(lson,l,m);  
        Bulid(rson,m+1,r);  
    }  
    int Query(int step,int l,int r,int val){  
        if(L[step].left==l&&r==L[step].right){  
            if(L[step].v.size()==0) return 0;  
            if(L[step].v[0]>val) return 0;  
            if(L[step].v.back()<=val) return L[step].v.size();  
            return (upper_bound(L[step].v.begin(),L[step].v.end(),val)-L[step].v.begin());  
        }  
        int m=(L[step].left+L[step].right)>>1;  
        if(r<=m) return Query(lson,l,r,val);  
        else if(l>m) return Query(rson,l,r,val);  
        else return Query(lson,l,m,val)+Query(rson,m+1,r,val);  
    }  
    bool ok(){  
        int x1=b[a[0]]+b[a[1]]+b[a[2]]-1;  
        int x2=x1+b[a[3]]+b[a[4]]+b[a[5]];  
        int y1=b[a[0]]+b[a[3]]+b[a[6]]-1;  
        int y2=y1+b[a[1]]+b[a[4]]+b[a[7]];  
        if(x1+1>=n||x[x1]==x[x1+1]) return false;  
        if(x2+1>=n||x[x2]==x[x2+1]) return false;  
        if(y1+1>=n||y[y1]==y[y1+1]) return false;  
        if(y2+1>=n||y[y2]==y[y2+1]) return false;  
        if(Query(1,0,x1,y[y1])!=b[a[0]]) return false;  
        if(Query(1,0,x1,y[y2])!=b[a[0]]+b[a[1]]) return false;  
        if(Query(1,x1+1,x2,y[y1])!=b[a[3]]) return false;  
        if(Query(1,x1+1,x2,y[y2])!=b[a[3]]+b[a[4]]) return false;  
        ret_x1=(x[x1]+x[x1+1])/2.0;  
        ret_x2=(x[x2]+x[x2+1])/2.0;  
        ret_y1=(y[y1]+y[y1+1])/2.0;  
        ret_y2=(y[y2]+y[y2+1])/2.0;  
        return true;   
    }  
    int main(){  
        //freopen("input.txt","r",stdin);  
        while(scanf("%d",&n)!=EOF){  
            for(int i=0;i<n;i++){  
                scanf("%d%d",&p[i].x,&p[i].y);  
                x[i]=p[i].x;y[i]=p[i].y;  
            }  
            sort(p,p+n);  
            sort(x,x+n);  
            sort(y,y+n);  
            Bulid(1,0,n-1);  
            for(int i=0;i<9;i++) scanf("%d",&b[i]);  
            for(int i=0;i<9;i++) a[i]=i;  
            int t=362880;  
            while(t--){  
                if(ok()){  
                    printf("%.1f %.1f
    %.1f %.1f
    ",ret_x1,ret_x2,ret_y1,ret_y2);  
                    break;  
                }  
                next_permutation(a,a+9);  
            }  
            if(t<=0) puts("-1");  
        }  
        return 0;  
    }  
  • 相关阅读:
    C#与数据库访问技术总结(三)之 Connection对象的常用方法
    ConnectionState详解
    SQL Server 中 RAISERROR 的用法
    C# 捕获数据库自定义异常
    "在创建窗口句柄之前,不能在控件上调用 Invoke 或 BeginInvoke"
    查询sql语句的执行时间
    c# 多线程 创建对象实例
    C#中IDisposable的用法-垃圾回收
    c#中的引用类型和值类型
    C++运行出现"what(): std::bad_alloc"的解决办法
  • 原文地址:https://www.cnblogs.com/Orange-User/p/7470571.html
Copyright © 2011-2022 走看看