zoukankan      html  css  js  c++  java
  • BZOJ1209 最佳包裹 (三维凸包 增量法)

    题意

    求三维凸包的表面积。
    N100Nle100

    题解

    暴力往当前的凸包里加点。O(n2)O(n^2)。题解详见大佬博客

    在这里插入图片描述

    扰动函数shakeshake是为了避免四点共面。

    CODE

    实测epseps开到1e101e-10才过

    #include <bits/stdc++.h>
    using namespace std;
    #define il inline
    const double eps = 1e-10;
    const int MAXN = 105;
    il double Rand() { return rand()/(double)RAND_MAX; }
    il double reps() { return (Rand()-0.5)*eps; };
    int n;
    struct point {
    	double x, y, z;
    	il void shake() { x+=reps(); y+=reps(); z+=reps(); }
    	il double len() { return sqrt(x*x + y*y + z*z); }
    	il point operator -(point o) { return (point){ x-o.x , y-o.y, z-o.z }; }
    	il point operator *(point o) { return (point){ y*o.z-z*o.y, z*o.x-x*o.z, x*o.y-y*o.x }; }
    	il double operator &(point o) { return x*o.x + y*o.y + z*o.z; }
    }A[MAXN];
    struct face {
    	int v[3];
    	il point normal() { return (A[v[1]]-A[v[0]]) * (A[v[2]]-A[v[0]]); }
    	il double area() { return normal().len() / 2; }
    }f[MAXN<<1], tmp[MAXN<<1];
    bool see(face a, point b) { return ( (b-A[a.v[0]])&a.normal() ) > 0; }
    int cnt;
    bool vis[MAXN][MAXN];
    void Convex3D() {
    	f[++cnt] = (face) { {1, 2, 3} };
    	f[++cnt] = (face) { {3, 2, 1} };
    	for(int i = 4, cur; i <= n; ++i) {
    		cur = 0;
    		for(int j = 1, can; j <= cnt; ++j) {
    			if(!(can = see(f[j], A[i]))) tmp[++cur] = f[j];
    			for(int k = 0; k < 3; ++k) vis[f[j].v[k]][f[j].v[(k+1)%3]] = can;
    		}
    		for(int j = 1; j <= cnt; ++j)
    			for(int k = 0; k < 3; ++k) {
    				int u = f[j].v[k], v = f[j].v[(k+1)%3];
    				if(vis[u][v] && !vis[v][u]) tmp[++cur] = (face){ {u, v, i} };
    			}
    		for(int j = 1; j <= cur; ++j) f[j] = tmp[j]; cnt = cur;
    	}
    }
    int main() {
    	srand(19260817);
    	cin>>n;
    	for(int i = 1; i <= n; ++i) cin>>A[i].x>>A[i].y>>A[i].z, A[i].shake();
    	Convex3D();
    	double S = 0;
    	for(int i = 1; i <= cnt; ++i) S += f[i].area();
    	printf("%.6f
    ", S);
    }
    
  • 相关阅读:
    poj 1179 Polygon (区间dp)
    POJ
    斜率优化dp
    poj 1185 炮兵阵地(状压dp)
    BZOJ 3156: 防御准备(斜率优化dp)
    BZOJ 3675: 序列分割 (斜率优化dp)
    poj 2411 Mondriaan's Dream (状压dp)
    ICPC China Nanchang National Invitational -- D. Match Stick Game(dp)
    P1417 烹调方案 (0/1背包+贪心)
    pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别
  • 原文地址:https://www.cnblogs.com/Orz-IE/p/12039196.html
Copyright © 2011-2022 走看看