zoukankan      html  css  js  c++  java
  • BZOJ 1038: [ZJOI2008]瞭望塔

    半平面交后,可能成为答案的点就是凸包上的点 和 山峰(分段函数的分段点).

    枚举一下就行了.

    #include <bits/stdc++.h>
    using namespace std;
    const double eps = 1e-10;
    const int MAXN = 505;
    inline double sqr(double x) { return x*x; }
    inline double dcmp(double x) {
        if(x < -eps) return -1;
        if(x > eps) return 1;
        return 0;
    }
    struct Point {
    	double x, y;
    	Point(){}
    	Point(const double &x, const double &y):x(x), y(y){}
    	inline Point operator +(const Point &o)const { return Point(x + o.x, y + o.y); }
    	inline Point operator -(const Point &o)const { return Point(x - o.x, y - o.y); }
    	inline Point operator *(const double &k)const { return Point(x * k, y * k); }
    	inline double operator *(const Point &o)const { return x * o.y - y * o.x; }
    	inline friend double dist(const Point &A, const Point &B) { return sqrt(sqr(A.x-B.x) + sqr(A.y-B.y)); }
    }P[MAXN];
    struct Line {
    	Point p, v; double angle;
    	Line(){}
    	Line(const Point &p, const Point &v):p(p), v(v){
    		angle = atan2(v.y, v.x);
    	}
    	inline friend bool On_Right(const Line &l, const Point &p) {
    		return dcmp(l.v * (p - l.p)) <= 0;
    	}
    	inline bool operator <(const Line &o)const {
    	    if(!dcmp(angle-o.angle))
    	    	return dcmp(v * (o.p - p)) < 0;
    	    return angle < o.angle;
        }
    	inline friend Point Get_Intersection(const Line &l1, const Line &l2) {
    		Point u = l1.p - l2.p;
    		double k = (l2.v * u) / (l1.v * l2.v);
    		return l1.p + l1.v * k;
    	}
            inline double f(double x) {
                    return p.y + (x-p.x)/v.x * v.y;
    	}
    }arr[MAXN], q[MAXN]; int top;
    inline void Insert(const Line &l) {
    	while(top > 1 && On_Right(l, Get_Intersection(q[top-1], q[top]))) --top;
    	q[++top] = l;
    }
    int n, m, tot;
    double x[MAXN], y[MAXN];
    inline double f(double X) {
        double re = 0;
        for(int i = 1; i <= top; ++i)
            re = max(re, q[i].f(X));
        return re;
    }
    inline double g(double X) {
        int i = upper_bound(x + 1, x + n + 1, X) - x - 1;
        return y[i] + (X-x[i])/(x[i+1]-x[i])*(y[i+1]-y[i]);
    }
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) scanf("%lf", &x[i]);
        for(int i = 1; i <= n; ++i) {
            scanf("%lf", &y[i]);
            if(i > 1) arr[++tot] = Line(Point(x[i-1], y[i-1]), Point(x[i]-x[i-1], y[i]-y[i-1]));
        }
    	sort(arr + 1, arr + tot + 1);
    	q[++top] = arr[1];
    	for(int i = 2; i <= tot; ++i)
            if(dcmp(arr[i].angle-arr[i-1].angle))
                Insert(arr[i]);
    	double ans = 1e15;
    	for(int i = 1; i <= n; ++i)
            ans = min(ans, f(x[i]) - y[i]);
        for(int i = 2; i <= top; ++i) {
    		Point now = Get_Intersection(q[i], q[i-1]);
    		ans = min(ans, now.y - g(now.x));
    	}
    	printf("%.3f
    ", ans);
    }
    
    
  • 相关阅读:
    codeforce 272B Dima and Sequence
    Codeforce 270D Greenhouse Effect
    codeforce 270C Magical Boxes
    codeforce 270B Multithreading
    图论--Dijkstra算法总结
    图论--(技巧)超级源点与超级汇点
    图论--Floyd总结
    ZOJ 3932 Handshakes
    ZOJ 3932 Deque and Balls
    ZOJ 3927 Programming Ability Test
  • 原文地址:https://www.cnblogs.com/Orz-IE/p/12039304.html
Copyright © 2011-2022 走看看