zoukankan      html  css  js  c++  java
  • BZOJ 2882: 工艺 (SA/SAM/最小表示法)

    我写的O(nlogn)O(nlogn)的SA 8000ms

    O(n)O(n)SAM 2800ms

    O(n)O(n)最小表示法 500ms

    头都锤爆…

    CODE

    贴上大常数选手的代码

    #include<bits/stdc++.h>
    using namespace std;
    char cb[1<<15],*cs=cb,*ct=cb;
    #define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
    template<class T>inline void read(T &res) {
    	char ch; int flg = 1; while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
    	for(res=ch-'0';isdigit(ch=getchar());res=res*10+ch-'0'); res*=flg;
    }
    const int MAXN = 600005;
    int s[MAXN];
    int x[MAXN], y[MAXN], c[MAXN], rk[MAXN], sa[MAXN];
    inline void Get_Sa(int n, int m) {
        for(int i = 1; i <= m; ++i) c[i] = 0;
        for(int i = 1; i <= n; ++i) ++c[x[i]=s[i]];
        for(int i = 2; i <= m; ++i) c[i] += c[i-1];
        for(int i = n; i >= 1; --i) sa[c[x[i]]--] = i;
        for(int k = 1; k <= n; k<<=1) {
            int p = 0;
            for(int i = n-k+1; i <= n; ++i) y[++p] = i;
            for(int i = 1; i <= n; ++i) if(sa[i]>k) y[++p] = sa[i]-k;
            for(int i = 1; i <= m; ++i) c[i] = 0;
            for(int i = 1; i <= n; ++i) ++c[x[i]];
            for(int i = 2; i <= m; ++i) c[i] += c[i-1];
            for(int i = n; i >= 1; --i) sa[c[x[y[i]]]--] = y[i];
            swap(x, y);
            x[sa[1]] = p = 1;
            for(int i = 2; i <= n; ++i)
                x[sa[i]] = (y[sa[i]] == y[sa[i-1]] && y[sa[i]+k] == y[sa[i-1]+k]) ? p : ++p;
            if((m=p) == n) break;
        }
        for(int i = 1; i <= n; ++i) rk[sa[i]] = i;
    }
    int n, b[MAXN], tot;
    int main() {
    	read(n);
    	for(int i = 1; i <= n; ++i)
            read(s[i]), b[++tot] = s[i];
        sort(b + 1, b + tot + 1); tot = unique(b + 1, b + tot + 1) - b - 1;
        for(int i = 1; i <= n; ++i)
            s[i] = s[n+i] = lower_bound(b + 1, b + tot + 1, s[i]) - b;
    	Get_Sa(n<<1, tot);
    	int S;
    	for(int i = 1; i <= n+1; ++i)
            if(sa[i] <= n) { S = sa[i]; break; }
    	for(int i = 0; i < n; ++i)
            printf("%d ", b[s[S+i]]);
    }
    
    
  • 相关阅读:
    前端常见跨域解决方案
    VS单元测试--初级篇
    高等数学思路
    二元函数求极值判别式AC-B^2
    向量积详解
    伯努利分布均值和方差
    两个标准正态随机变量相乘的方差
    a分位数与双侧a分位数
    中心极限定理概念理解与记忆
    样本方差概念解析
  • 原文地址:https://www.cnblogs.com/Orz-IE/p/12039312.html
Copyright © 2011-2022 走看看