题目传送门
分析
放一个dalao博客: xyz32768 的博客,看完再回来看本蒟蒻的口胡吧(其实嘛…不回来也行)
- 精髓是合并的方案数的计算,至于为什么是,是因为当前点必须独立成为第一部分
- 时间复杂度的也是个玄学东西。其实是因为枚举时上限分别是(到目前所有子树的大小)和(这棵子树的大小),乘起来就是相当于在下方中枚举不同子树内的点对。那么每一对只会在处被枚举到。因为在下方,两个点不可能一起被枚举到;而在上方,它们已经存在于同一子树了。所以这个枚举总时间复杂度是。最终复杂度就为
- 注意判断环的方式有没有考虑周全。因为不能用简单的用入度为来判断每一棵树的根节点(因为可能有环),我写的的的判环各种姿势,见下
- 第一发
- 第二发
- 三
- 四
- 。。。于是直接每次清零数组跑。能过就行。
-
CODE
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 105;
const int mod = 1e9+7;
int n, m, edgecnt;
struct edge { int u, v; }e[MAXN];
int scc[MAXN];
int find(int x) { return scc[x] == x ? x : scc[x]=find(scc[x]); }
int fir[MAXN], to[MAXN], nxt[MAXN], cnt, in[MAXN];
inline void add(int u, int v) { to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt; in[v]++; }
bool vis[MAXN];
bool check(int u) {
if(vis[u]) return 0;
vis[u] = 1;
for(int i = fir[u]; i; i = nxt[i])
if(!check(to[i])) return 0;
return 1;
}
int f[MAXN][MAXN], sz[MAXN], tmp[MAXN], c[MAXN][MAXN];
void dp(int u) {
f[u][1] = sz[u] = 1;
for(int l = fir[u], v; l; l = nxt[l]) {
dp(v = to[l]);
for(int i = 1; i <= sz[u]+sz[v]; ++i) tmp[i] = 0;
for(int i = 1; i <= sz[u]+sz[v]; ++i)
for(int j = 1; j <= sz[u] && j <= i; ++j)
for(int k = 1; k <= sz[v] && k <= i; ++k)
if(k + j >= i)
tmp[i] = (tmp[i] + 1ll * f[u][j] * f[v][k] % mod * c[i-1][j-1] % mod * c[j-1][k-(i-j)] % mod) % mod;
for(int i = 1; i <= sz[u]+sz[v]; ++i) f[u][i] = tmp[i];
sz[u] += sz[v];
}
}
int main () {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) scc[i] = i;
char s[2];
for(int i = 1, x, y; i <= m; ++i) {
scanf("%d%s%d", &x, s, &y);
if(s[0] == '=') scc[find(y)]=find(x);
else {
if(s[i] == '>') swap(x, y); //emmm... unnecessary
e[++edgecnt] = (edge){ x, y };
}
}
for(int i = 1; i <= n; ++i) find(i);
for(int i = 1; i <= edgecnt; ++i) {
if(scc[e[i].u] == scc[e[i].v]) return puts("0"), 0;
add(scc[e[i].u], scc[e[i].v]);
}
bool flg = 1;
for(int i = 1; i <= n; ++i) if(scc[i] == i) {
memset(vis, 0, sizeof vis);
if(!check(i)) { flg = 0; break; } //judge the circle
if(!in[i]) add(0, i);
}
if(!flg) return puts("0"), 0;
c[0][0] = 1;
for(int i = 1; i <= n; ++i) {
c[i][0] = c[i][i] = 1;
for(int j = 1; j < i; ++j)
c[i][j] = (c[i-1][j-1] + c[i-1][j]) % mod;
}
dp(0);
int ans = 0;
for(int i = 1; i <= sz[0]; ++i)
ans = (ans + f[0][i]) % mod;
printf("%d
", ans);
}