zoukankan      html  css  js  c++  java
  • Codeforces Round #685 (Div. 2)

    Codeforces Round #685 (Div. 2)

    A Subtract or Divide

    思路:对于偶数直接除 (2) 再减 (1) ,奇数先减 (1) ,然后和偶数相同,小一点的数要特判

    #include <bits/stdc++.h>
    using namespace std;
    #define lc (rt << 1)
    #define rc ((rt << 1) | 1)
    #define fi first
    #define se second
    #define pb push_back
    #define pii pair<int, int>
    #define rep(i, l, r) for (int i = (l); i <= (r); ++i)
    #define per(i, r, l) for (int i = (r); i >= (l); --i)
    #define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
    typedef long long LL;
    const int maxn = 1e6 + 20;
    const int mod = 1e9 + 7;
    int a[maxn], n;
    int main(int argc, char const *argv[])
    {
    	int t;
    	scanf("%d", &t);
    	while(t--){
    		scanf("%d", &n);
    		if(n == 1) {
    			printf("0
    ");
    		} else if(n == 2){
    			printf("1
    ");
    		} else if(n == 3){
    			printf("2
    ");
    		} else if(n % 2 == 0){
    			printf("2
    ");
    		} else {
    			printf("3
    ");
    		}
    	}    
        return 0;
    }
    

    B Non-Substring Subsequence

    思路:其实只用看 (le) 的左边有没有和 (s_{le}) 相同的或者 (ri) 的右边有没有和 (s_{ri}) 相同的,有一个成立就是 (YES)

    #include <bits/stdc++.h>
    using namespace std;
    #define lc (rt << 1)
    #define rc ((rt << 1) | 1)
    #define fi first
    #define se second
    #define pb push_back
    #define pii pair<int, int>
    #define rep(i, l, r) for (int i = (l); i <= (r); ++i)
    #define per(i, r, l) for (int i = (r); i >= (l); --i)
    #define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
    typedef long long LL;
    const int maxn = 1e6 + 20;
    const int mod = 1e9 + 7;
    int a[maxn], n, q;
    char s[maxn];
    int sum[maxn];
    int main(int argc, char const *argv[])
    {
    	int t;
    	scanf("%d", &t);
    	while(t--){
    		scanf("%d%d", &n, &q);
    		scanf("%s", s + 1);
    		rep(i, 1, n){
    			sum[i] = sum[i - 1];
    			if(s[i] == '1') sum[i]++;
    		}
    		while(q--){
    			int le, ri;
    			scanf("%d%d", &le, &ri);
    			if(s[le] == '1' && sum[le - 1]){
    				printf("YES
    ");
    				continue;
    			}
    			if(s[le] == '0' && sum[le - 1] != le - 1){
    				printf("YES
    ");
    				continue;
    			}
    			if(s[ri] == '0' && sum[n] - sum[ri] != n - ri){
    				printf("YES
    ");
    				continue;
    			}
    			if(s[ri] == '1' && sum[n] - sum[ri]){
    				printf("YES
    ");
    				continue;
    			}
    			printf("NO
    ");
    		}
    	}    
        return 0;
    }
    

    C String Equality

    思路:统计串 (s)(t)(a)(z) 的个数,然后从 (a) 开始枚举, 如果 (nums[i] < numt[i]) ,答案就是 (No) ,如果 (nums[i] >= numt[i]) ,那么判断 (nums[i] - numt[i]) 能不能整除 (k) ,若不能,答案就是 (No) ,否则 (nums[i + 1] = nums[i] - numt[i])

    #include <bits/stdc++.h>
    using namespace std;
    #define lc (rt << 1)
    #define rc ((rt << 1) | 1)
    #define fi first
    #define se second
    #define pb push_back
    #define pii pair<int, int>
    #define rep(i, l, r) for (int i = (l); i <= (r); ++i)
    #define per(i, r, l) for (int i = (r); i >= (l); --i)
    #define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
    typedef long long LL;
    const int maxn = 1e6 + 20;
    const int mod = 1e9 + 7;
    int a[maxn], n, q;
    char s[maxn], t[maxn];
    int nums[maxn], numt[maxn];
    int main(int argc, char const *argv[])
    {
    	int tt;
    	scanf("%d", &tt);
    	while(tt--){
    		scanf("%d%d", &n, &q);
    		scanf("%s", s + 1);
    		scanf("%s", t + 1);
    		sort(s + 1, s + n + 1);
    		rep(i, 0, 25) nums[i] = numt[i] = 0;
    		rep(i, 1, n) nums[s[i] - 'a']++;
    		rep(i, 1, n) numt[t[i] - 'a']++;
    		int flag = 1;
    		rep(i, 0, 25){
    			if(numt[i] > nums[i]){
    				flag = 0;
    				break;
    			}
    			int res = nums[i] - numt[i];
    			if(res % q){
    				flag = 0;
    				break;
    			}
    			nums[i + 1] += res;
    		}
    		if(flag) printf("YES
    ");
    		else printf("NO
    ");
    	}    	
        return 0;
    }
    

    D Circle Game

    思路:我们首先找到最大的 (z) 使得 (zk * zk * 2 <= d^{2}) ,然后判断 ((k*(z + 1)) * (k*(z + 1)) + zk * zk leq d^{2}) ,满不满足,若满足,则先手赢,否则后手赢。

    证明:

    ((k*(z + 1)) * (k*(z + 1)) + zk * zk leq d^{2}) 成立 :容易看出,无论后手玩家如何移动,先手玩家总有方法使得当前坐标的 (|x - y| == k) ,所以先手必胜

    ((k*(z + 1)) * (k*(z + 1)) + zk * zk leq d^{2}) 不成立:容易看出,无论先手玩家如何移动,后手玩家总能使当前坐标 (|x == y|)

    #include <bits/stdc++.h>
    using namespace std;
    #define lc (rt << 1)
    #define rc ((rt << 1) | 1)
    #define fi first
    #define se second
    #define pb push_back
    #define pii pair<int, int>
    #define rep(i, l, r) for (int i = (l); i <= (r); ++i)
    #define per(i, r, l) for (int i = (r); i >= (l); --i)
    #define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
    typedef long long LL;
    const int maxn = 1e6 + 20;
    const int mod = 1e9 + 7;
    int a[maxn], n, q;
    char s[maxn], t[maxn];
    int nums[maxn], numt[maxn];
    int main(int argc, char const *argv[])
    {
    	int tt;
    	scanf("%d", &tt);
    	while(tt--){
    		LL d, k;
    		scanf("%I64d%I64d", &d, &k);
    		LL cnt = 1;
    		for(LL i = k; i <= d; i += k){
    			if(i * i * 2LL <= d * d){
    				cnt = i / k * 2;
    				if((i + k) * (i + k) + i * i <= d * d){
    					cnt++;
    				}
    			}
    		}
    		if(cnt % 2){
    			printf("Ashish
    ");
    		} else {
    			printf("Utkarsh
    ");
    		}
    	}    	
        return 0;
    }
    

    E1 E2 Bitwise Queries

    由于直接看的 (E2) 所以直接讲最优解

    思路:我们先得到 (a_1)(a_2)(a_n) 所有数异或后的值 (b_2, b_3, b_4, b_5 .... b_n) ,容易想到只要确定一个数的值,就可以确定其他所有数,然后分两种情况讨论

    一、存在相同的数,那么一定存在某两个 (i, j) 使得 (b_i == b_j) 或者 存在一个 (i) 使得 (b_i == 0) ,前者可以的得出 (a_i == a_j) ,后者可以得出 (a_1 == a_i)

    ​ 然后我们将这两个相同的数 (AND) 后的值就是这两个数的值了

    二、不存在相同的数,根据题目中 (n) 一定是 (2) 的次幂,并且 (0leq a[i] leq n - 1) 的条件,可以得出 (a)(0)(n - 1) 的一个排列, 那么就一定存在一个 (i) 使得 (b_i)

    ​ 等于 (n - 1) ,这样的 (a_1)(a_i) 有一个性质,对于二进制上任意一位,如果 (a_1) 的值为 (0) ,那么 (a_i) 一定为 (1) ,为 (1) 同理,那么我们只要找到任意一个 (j)

    ​ 让 (a_j)(a_1, a_i) 分别 (AND) 后得到值 (c_1, c_i) ,那么 (c_1 | c_i) 的值就是 (a_j) 的值了

    自己手推一下比较好理解

    #include <bits/stdc++.h>
    using namespace std;
    #define lc (rt << 1)
    #define rc ((rt << 1) | 1)
    #define fi first
    #define se second
    #define pb push_back
    #define pii pair<int, int>
    #define rep(i, l, r) for (int i = (l); i <= (r); ++i)
    #define per(i, r, l) for (int i = (r); i >= (l); --i)
    #define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
    typedef long long LL;
    const int maxn = 1e6 + 20;
    const int mod = 1e9 + 7;
    int n;
    int res[maxn], ans[maxn];
    map<int, int> mp;
    int main(int argc, char const *argv[])
    {
        scanf("%d", &n);
        int flag = 1;
        int id1 = -1, id2 = -1;
        for(int i = 2; i <= n; i++){
            printf("XOR 1 %d
    ", i);
            fflush(stdout);
            scanf("%d", &res[i]);
            if(res[i] == 0){
                flag = 0;
                id1 = 1, id2 = i;
            }
            if(mp.count(res[i]) && id1 == -1) {
                id1 = mp[res[i]], id2 = i;
                flag = 0;
            }
            mp[res[i]] = i;
        }
        if(flag == 0){
            printf("AND %d %d
    ", id1, id2);
            fflush(stdout);
            int x;
            scanf("%d", &x);
            ans[id1] = ans[id2] = x;
            if(id1 != 1){
                ans[1] = x ^ res[id1];
            }
            printf("! %d ", ans[1]);
            rep(i, 2, n){
                ans[i] = ans[1] ^ res[i];
                printf("%d ", ans[i]);
            }
        } else {
            id1 = id2 = -1;
            for(int i = 2; i <= n; i++){
                if(res[i] == n - 1){
                    id1 = 1, id2 = i;
                    break;
                }
            }
            int id;
            if(id2 == 2) id = 3;
            else id = 2;
            int b1, b2;
            printf("AND %d %d
    ", id1, id);
            fflush(stdout);
            scanf("%d", &b1);
            printf("AND %d %d
    ", id2, id);
            fflush(stdout);
            scanf("%d", &b2);
            ans[id] = b1 | b2;
            ans[1] = ans[id] ^ res[id];
            printf("! %d ", ans[1]);
            rep(i, 2, n){
                ans[i] = ans[1] ^ res[i];
                printf("%d ", ans[i]);
            }
        }
        return 0;
    }
    

    F Nullify The Matrix

    思路:我们定义 (f(x))(a[i_1][j_1] igoplus a[i_2][j_2] .... igoplus a[i_k][j_k]) 的值,其中 (i_k + j_k == x) ,也就是某一条斜对角线的异或和,如果存在 (f(x)) 不为 (0) ,那么先手赢,否则后手赢, 具体证明请看官方题解,我也是赛后补的题(菜鸡落泪

    #include <bits/stdc++.h>
    using namespace std;
    #define lc (rt << 1)
    #define rc ((rt << 1) | 1)
    #define fi first
    #define se second
    #define pb push_back
    #define pii pair<int, int>
    #define rep(i, l, r) for (int i = (l); i <= (r); ++i)
    #define per(i, r, l) for (int i = (r); i >= (l); --i)
    #define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
    typedef long long LL;
    const int maxn = 1e6 + 20;
    const int mod = 1e9 + 7;
    int a[105][105];
    int n, m;
    int main(int argc, char const *argv[])
    {
        int t;
        scanf("%d", &t);
        while(t--){
            scanf("%d%d", &n, &m);
            rep(i, 1, n){
                rep(j, 1, m){
                    scanf("%d", &a[i][j]);
                }
            }
            int flag = 0;
            rep(sum, 2, n + m){
                int res = 0;
                rep(i, 1, sum - 1){
                    if(!(i >= 1 && i <= n && sum - i >= 1 && sum - i <= m)) continue;
                    res ^= a[i][sum - i];
                }
                if(res) {
                    flag = 1;
                    break;
                }
            }
            if(flag) printf("Ashish
    ");
            else printf("Jeel
    ");
        }   
        return 0;
    }
    
  • 相关阅读:
    【电子书】企业级IT运维宝典之GoldenGate实战下载
    10.Oracle Golden Date(ogg)的搭建和管理(转载)
    VMware Workstation 15 Pro 永久激活密钥
    oracle undo表空间增大不释放
    Oracle11g-BBED安装
    alter system/session set events相关知识
    DG环境的日常巡检
    nginx ----http强制跳转https
    转载:Zabbix-(五)监控Docker容器与自定义jvm监控项
    ORACLE备份保留策略(RETENTION POLICY)
  • 原文地址:https://www.cnblogs.com/PCCCCC/p/14027306.html
Copyright © 2011-2022 走看看