zoukankan      html  css  js  c++  java
  • [atAGC052B]Tree Edges XOR

    定义两点的距离$d(x,y)$为$x$到$y$路径上边权异或和,则两棵树相同当且仅当$forall 1le ile n$,$d(1,i)$相同

    新建一个节点0,连边$(0,1)$,初始权值为0,且不能以这条边为对象操作(但操作与1相连的边会影响其)

    记$d_{i}=d(0,i)$,考虑一次操作$(x,y)$对$d_{i}$的影响,恰好是交换$d_{x}$和$d_{y}$

    最终,令$a_{i}$为目标树中$d(1,i)$的值,即要求$d_{i}oplus d_{1}=a_{i}$

    同时,记$b_{i}$为初始树中$d(0,i)$的值(也即$d(1,i)$),那么$d_{i}$即$b_{i}$重新排列的结果,有$igoplus_{i=1}^{n}d_{i}=igoplus_{i=1}^{n}b_{i}$

    将之代入前者,根据$n$为奇数,可得$d_{1}=igoplus_{i=1}^{n}a_{i}igoplus_{i=1}^{n}b_{i}$,再判定$d_{1}$是否在本来的$b_{i}$中,以及$b_{i}oplus d_{1}$是否等于$a_{i}$(排序后的结果)即可

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define N 100005
     4 struct Edge{
     5     int nex,to,len1,len2;
     6 }edge[N<<1];
     7 int E,n,x,y,z1,z2,head[N],a[N],b[N];
     8 void add(int x,int y,int z1,int z2){
     9     edge[E].nex=head[x];
    10     edge[E].to=y;
    11     edge[E].len1=z1;
    12     edge[E].len2=z2;
    13     head[x]=E++;
    14 }
    15 void dfs(int k,int fa,int s1,int s2){
    16     b[k]=s1;
    17     a[k]=s2;
    18     for(int i=head[k];i!=-1;i=edge[i].nex)
    19         if (edge[i].to!=fa)dfs(edge[i].to,k,s1^edge[i].len1,s2^edge[i].len2);
    20 }
    21 int main(){
    22     scanf("%d",&n);
    23     memset(head,-1,sizeof(head));
    24     for(int i=1;i<n;i++){
    25         scanf("%d%d%d%d",&x,&y,&z1,&z2);
    26         add(x,y,z1,z2);
    27         add(y,x,z1,z2);
    28     } 
    29     dfs(1,0,0,0);
    30     for(int i=1;i<=n;i++)b[0]^=a[i];
    31     for(int i=1;i<=n;i++)b[0]^=b[i];
    32     for(int i=1;i<=n;i++)b[i]^=b[0];
    33     sort(a+1,a+n+1);
    34     sort(b+1,b+n+1);
    35     if (b[1]){
    36         printf("NO");
    37         return 0;
    38     }
    39     for(int i=1;i<=n;i++)
    40         if (a[i]!=b[i]){
    41             printf("NO");
    42             return 0;
    43         }
    44     printf("YES");
    45 } 
    View Code
  • 相关阅读:
    [LeetCode] Construct Binary Tree from Inorder and Pretorder Traversal
    [LeetCode] Construct Binary Tree from Inorder and Postorder Traversal
    [LeetCode] Candy
    [LeetCode] Next Permutation
    [LeetCode] Permutation Sequence
    [LeetCode] Permutations II
    【转载pku】三十分钟掌握STL
    [LeetCode] Permutations
    【附论文】Facebook推面部识别软件 精准度高达97.25%
    【转载】limits.h
  • 原文地址:https://www.cnblogs.com/PYWBKTDA/p/14687316.html
Copyright © 2011-2022 走看看