zoukankan      html  css  js  c++  java
  • LA 5031

     Graph and Queries

    Time limit: 3.000 second

    You are given an undirected graph with N vertexes and M edges. Every vertex in this graph has an integer value assigned to it at the beginning. You're also given a sequence of operations and you need to process them as requested. Here's a list of the possible operations that you might encounter:

    1. Deletes an edge from the graph.

      The format is [D X], where X is an integer from 1 to M, indicating the ID of the edge that you should delete. It is guaranteed that no edge will be deleted more than once.

    2. Queries the weight of the vertex with K-th maximum value among all vertexes currently connected with vertex X (including X itself).

      The format is [Q X K], where X is an integer from 1 to N, indicating the id of the vertex, and you may assume that K will always fit into a 32-bit signed integer. In case K is illegal, the value for that query will be considered as undefined, and you should return 0 as the answer to that query.

    3. Changes the weight of a vertex.

      The format is [C X V], where X is an integer from 1 to N, and V is an integer within the range [ -106, 106].

    The operations end with one single character, E, which indicates that the current case has ended. For simplicity, you only need to output one real number - the average answer of all queries.

    Input 

    There are multiple test cases in the input file. Each case starts with two integers N and M (1$ le$N$ le$* 104, 0$ le$M$ le$* 104), the number of vertexes in the graph. The next N lines describes the initial weight of each vertex (- 106$ le$[weight][i]$ le$106). The next part of each test case describes the edges in the graph at the beginning. Vertexes are numbered from 1 to N. The last part of each test case describes the operations to be performed on the graph. It is guaranteed that the number of query operations [Q X K] in each case will be in the range [ 1, 2 * 105], and there will be no more than * 105 operations that change the values of the vertexes [C X V].

    There will be a blank line between two successive cases. A case with N = 0, M = 0 indicates the end of the input file and this case should not be processed by your program.

    Output 

    For each test case, output one real number - the average answer of all queries, in the format as indicated in the sample output. Please note that the result is rounded to six decimal places.


    Explanation for samples:

    For the first sample:

    D 3 - deletes the 3rd edge in the graph (the remaining edges are (1, 2) and (2, 3))

    Q 1 2 - finds the vertex with the second largest value among all vertexes connected with 1. The answer is 20.

    Q 2 1 - finds the vertex with the largest value among all vertexes connected with 2. The answer is 30.

    D 2 - deletes the 2nd edge in the graph (the only edge left after this operation is (1, 2))

    Q 3 2 - finds the vertex with the second largest value among all vertexes connected with 3. The answer is 0 (Undefined).

    C 1 50 - changes the value of vertex 1 to 50.

    Q 1 1 - finds the vertex with the largest value among all vertex connected with 1. The answer is 50.

    E - This is the end of the current test case. Four queries have been evaluated, and the answer to this case is (20 + 30 + 0 + 50) / 4 = 25.000.


    For the second sample, caution about the vertex with same weight:

    Q 1 1 - the answer is 20

    Q 1 2 - the answer is 20

    Q 1 3 - the answer is 10

    Sample Input 

    3 3 
    10 
    20 
    30 
    1 2 
    2 3 
    1 3 
    D 3 
    Q 1 2 
    Q 2 1 
    D 2 
    Q 3 2 
    C 1 50
    Q 1 1
    E
    
    3 3 
    10 
    20 
    20 
    1 2 
    2 3 
    1 3 
    Q 1 1 
    Q 1 2 
    Q 1 3 
    E 
    0 0
    

    Sample Output 

    Case 1: 25.000000 
    Case 2: 16.666667

    有关数据结构有Treap树,并查集,同时离线算法的设计。

    /*
    * @author  Panoss
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<vector>
    #include<ctime>
    #include<stack>
    #include<queue>
    #include<list>
    using namespace std;
    #define DBG 0
    #define fori(i,a,b) for(int i = (a); i < (b); i++)
    #define forie(i,a,b) for(int i = (a); i <= (b); i++)
    #define ford(i,a,b) for(int i = (a); i > (b); i--)
    #define forde(i,a,b) for(int i = (a); i >= (b); i--)
    #define forls(i,a,b,n) for(int i = (a); i != (b); i = n[i])
    #define mset(a,v) memset(a, v, sizeof(a))
    #define mcpy(a,b) memcpy(a, b, sizeof(a))
    #define dout  DBG && cerr << __LINE__ << " >>| "
    #define checkv(x) dout << #x"=" << (x) << " | "<<endl
    #define checka(array,a,b) if(DBG) { 
        dout << #array"[] | " << endl; 
        forie(i, a, b) cerr << "[" << i << "]=" << array[i] << " |" << ((i - (a)+1) % 5 ? " " : "
    "); 
    if (((b)-(a)+1) % 5) cerr << endl; 
    }
    #define redata(T, x) T x; cin >> x
    #define MIN_LD -2147483648
    #define MAX_LD  2147483647
    #define MIN_LLD -9223372036854775808
    #define MAX_LLD  9223372036854775807
    #define MAX_INF 18446744073709551615
    inline int  reint() { int d; scanf("%d", &d); return d; }
    inline long relong() { long l; scanf("%ld", &l); return l; }
    inline char rechar() { scanf(" "); return getchar(); }
    inline double redouble() { double d; scanf("%lf", &d); return d; }
    inline string restring() { string s; cin >> s; return s; }
    
    struct Treap_node
    {
        int value, priority, s;         ///键值,优先级,总结点数(从根(包括根)开始往下算的结点个数)
        struct Treap_node * child[2];
        Treap_node(int v): value(v)
        {
            child[0] =  child[1] = NULL;
            priority = rand();
            s = 1;
        }
        bool operator < (const Treap_node & X) const
        {
            return priority < X.priority;
        }
        int compare(int v)
        {
            if(v == value) return -1;
            return v < value ? 0 : 1;
        }
        void updata()
        {
            s = 1;
            if(child[0]) s += child[0]->s;
            if(child[1]) s += child[1]->s;
        }
    };
    
    void Rotate(Treap_node* &root, int d)  ///0左旋(逆时针),1右旋(顺时针)
    {
        Treap_node * k = root->child[d^1];
        root->child[d^1] = k->child[d];
        k->child[d] = root;
        root->updata();
        k->updata();
        root = k;
    }
    
    void Insert_node(Treap_node* &root, int v)
    {
        if(!root)
        {
            root = new Treap_node(v);
        }
        else
        {
            int d = (v < root->value ? 0 : 1);     ///若允许有相同结点
            ///int d = root->compare(v);           ///若不允许有相同结点
            Insert_node(root->child[d], v);
            if(root->child[d] > root) Rotate(root, d^1);
        }
        root->updata();
    }
    
    void Remove_node(Treap_node * &root, int v)
    {
        int d = root->compare(v);
    
        if(d == -1)
        {
            Treap_node * temp = root;
    
            if(root->child[0] && root->child[1])
            {
                int dir = root->child[0] > root->child[1] ? 1:0;
                Rotate(root, dir);
                Remove_node(root->child[dir], v);
            }
            else
            {
                if(!root->child[0]) root = root->child[1];
                else root = root->child[0];
    
                delete temp;
            }
        }
        else
        {
            Remove_node(root->child[d], v);
        }
    
        if(root) root->updata();
    }
    
    bool Find_node(Treap_node * root, int v)
    {
        while(root)
        {
            int d = root->compare(v);
            if(d ==  -1) return true;
            else root = root->child[d];
        }
        return false;
    }
    
    const int MAXN = 20000 + 10;
    const int MAXM = 60000 + 10;
    const int MAXC = 400000 + 10;
    
    struct Command
    {
        char op;
        int x, p; ///p = k or v
    };
    
    Command cmd[MAXC];
    
    int f[MAXN];
    int Find(int x) {return f[x] == x? x : f[x] = Find(f[x]);}
    
    int from[MAXM], to[MAXM], weight[MAXN];
    bool removed[MAXM];
    
    Treap_node * Tree[MAXN];
    
    int K_th(Treap_node * root, int k)
    {
        if(!root || k <= 0 || k > root->s) return 0;
        int s = (root->child[1]==NULL?0:root->child[1]->s);
        if(k == s+1) return root->value;
        else if(k <= s) return K_th(root->child[1],k);
        else return  K_th(root->child[0],k-s-1);
    }
    
    void Merge_Tree(Treap_node* &from_root, Treap_node * &to_root)
    {
        if(from_root->child[0]) Merge_Tree(from_root->child[0],to_root);
        if(from_root->child[1]) Merge_Tree(from_root->child[1],to_root);
        Insert_node(to_root,from_root->value);
        delete from_root;
        from_root = NULL;
    }
    
    void Remove_Tree(Treap_node * &root)
    {
        if(root->child[0]) Remove_Tree(root->child[0]);
        if(root->child[1]) Remove_Tree(root->child[1]);
        delete root;
        root = NULL;
    }
    
    void Add_Edge(int e)
    {
        int u = Find(from[e]), v = Find(to[e]);
        if(u!=v)
        {
            if(Tree[u]->s < Tree[v]->s)
            {
                f[u] = v;
                Merge_Tree(Tree[u],Tree[v]);
            }
            else
            {
                f[v] = u;
                Merge_Tree(Tree[v],Tree[u]);
            }
        }
    }
    
    int query_cnt;
    long long query_tot;
    
    void Query(int x, int k)
    {
        query_cnt ++;
        query_tot += K_th(Tree[Find(x)], k);
    }
    
    void Change_weight(int x, int v)
    {
        int u = Find(x);
        Remove_node(Tree[u], weight[x]);
        Insert_node(Tree[u], v);
        weight[x] = v;///
    }
    
    int main()
    {
        int Case = 0;
        int n,m;
        while(scanf("%d%d",&n,&m)==2&&(n+m))
        {
            Case ++;
    
            forie(i,1,n) scanf("%d",&weight[i]);
            forie(i,1,m) scanf("%d%d",&from[i],&to[i]);
    
            ///Init
            mset(removed,false);
            forie(i,1,n) f[i] = i;
            query_cnt = query_tot = 0;
    
            int c = 0;
            for(;;)
            {
                char op;
                int x , p = 0, v = 0;
                scanf(" %c",&op);
                if(op == 'E') break;
                scanf("%d",&x);
                if(op == 'D') removed[x] = true;
                if(op == 'Q') scanf("%d",&p);
                if(op == 'C')
                {
                    scanf("%d",&v);
                    p = weight[x];
                    weight[x] = v;
                }
                cmd[++c] = (Command){op,x,p};
            }
    
            forie(i,1,n)
            {
                if(Tree[i]) Remove_Tree(Tree[i]);
                Tree[i] = new Treap_node(weight[i]);
            }
    
            forie(i,1,m)
                if(!removed[i]) Add_Edge(i);
    
            forde(i,c,1)
            {
                if(cmd[i].op == 'D') Add_Edge(cmd[i].x);
                if(cmd[i].op == 'Q') Query(cmd[i].x,cmd[i].p);
                if(cmd[i].op == 'C') Change_weight(cmd[i].x,cmd[i].p);
            }
            printf("Case %d: %.6lf
    ",Case,query_tot/(double)query_cnt);
        }
        return 0;
    }
  • 相关阅读:
    “菜鸟”程序员和“大神”程序员差距在哪里?别告诉我你连菜鸟都不算!
    Android开发:为什么你的学习效率如此低,为什么你很迷茫?
    Android架构师吐槽腾讯王者荣耀的程序员,排位匹配算法怎么搞的,每次都输
    程序员如何回答面试官“请介绍一下自己”这类问题
    Android程序员事件分发机制学习笔记
    面试时,问哪些问题能试出一个 Android 应用开发者真正的水平?
    List、Set、Map的区别
    在Eclipse中使用JUnit4进行单元测试(图文教程一)
    1
    2016、11、17
  • 原文地址:https://www.cnblogs.com/Panoss/p/3810243.html
Copyright © 2011-2022 走看看