此题是 2018 年 ICPC Asia Beijing Regional Contest 的 C 题。
题目大意
求斜边长度不超过 $n$($ n le 10^9$) 的勾股数的数量。不计两直角边的顺序,即勾股数 $(a, b, c)$ 和 $(b, a, c)$ 视作同一组。
分析
这是一道颇为经典的计数问题。
请先阅读维基百科上的 Pythagorean triple 条目。
设斜边为 $n$ 的勾股数有 $f(n)$ 个。又设斜边为 $n$ 的本原勾股数有 $g(n)$ 个。于是有
$ f(n) = sum_{d mid n} g(d)$ 。
令 $F$ 为 $f$ 的前缀和,令 $G$ 为 $g$ 的前缀和。有
egin{aligned}
F(n) &= sum_{i = 1}^{n} f(n) \
&= sum_{i = 1}^{n} sum_{d mid i} g(d) \
&= sum_{i = 1}^{n} G(floor{n / i})
end{aligned}
根据 $G$ 的定义,有
egin{aligned}
G(n) &= sum_{i = 1}^{n} g(i) \
&=sum_{substack{1 le x le n \ x ext{ is odd} } } sum_{substack{1 le y le n \ y ext{ is even}}} [x^2 + y^2 le n] [gcd(x, y) = 1] \
&= frac{1}{2} left(sum_{1 le x le n } sum_{1 le y le n } - sum_{substack{1 le x le n \ x ext{ is odd}} } sum_{substack{1 le y le n \ y ext{ is odd}} }
ight) [x^2 + y^2 le n] [gcd(x, y) = 1]
end{aligned}
而
egin{aligned}
& left(sum_{1 le x le n } sum_{1 le y le n } - sum_{substack{1 le x le n \ x ext{ is odd}} } sum_{substack{1 le y le n \ y ext{ is odd}} }
ight) [x^2 + y^2 le n] [gcd(x, y) = 1] \
&= left(sum_{1 le x le n } sum_{1 le y le n } - sum_{substack{1 le x le n \ x ext{ is odd}} } sum_{substack{1 le y le n \ y ext{ is odd}} }
ight) [x^2 + y^2 le n] sum_{d mid gcd(x, y)} mu(d) \
&= sum_{1le d le sqrt{n/2}} mu(d) left(sum_{1 le x le n } sum_{1 le y le n } - sum_{substack{1 le x le n \ x ext{ is odd}} } sum_{substack{1 le y le n \ y ext{ is odd}} }
ight) [x^2 + y^2 le n] [d mid x] [d mid y] \
&= sum_{1le d le sqrt{n/2}} mu(d) left(sum_{ 1 le i le n/d } sum_{1 le y le n } - sum_{substack{1 le i le n/d \ di ext{ is odd}} } sum_{substack{1 le y le n \ y ext{ is odd}} }
ight) [(id)^2 + y^2 le n] [d mid y] \
&= sum_{1le d le sqrt{n/2}} mu(d) left(sum_{ 1 le i le sqrt{n}/d } sum_{1 le j le sqrt{n-(id)^2}/d } - sum_{substack{1 le i le sqrt{n}/d \ di ext{ is odd}} } sum_{substack{1 le j le sqrt{n-(id)^2}/d \ dj ext{ is odd}} }
ight) 1 \
&= sum_{1le d le sqrt{n/2}} mu(d) left(sum_{ 1 le i le sqrt{n}/d } floor{ frac{sqrt{n-(id)^2}}{d} } - [d ext{ is odd}] sum_{substack{1 le i le sqrt{n}/d \ i ext{ is odd}} } sum_{substack{1 le j le sqrt{n-(id)^2}/d \ j ext{ is odd}} } 1
ight) \
&= sum_{1le d le sqrt{n/2}} mu(d) left(sum_{ 1 le i le sqrt{n}/d } floor{ frac{sqrt{n-(id)^2}}{d} } - [d ext{ is odd}] sum_{substack{1 le i le sqrt{n}/d \ i ext{ is odd}} } floor{frac{frac{sqrt{n-(id)^2}}{d} + 1}{2}}
ight)
end{aligned}
TODO:复杂度分析。
Implementation
预处理 $G$ 的前 2000 万项。
注意:代码不完整。
int main() {
FAST_READ
cout << fixed << setprecision(1);
#ifdef LOCAL
ifstream in("main.in");
cin.rdbuf(in.rdbuf());
#endif
const int nax = 1e9 + 1;
// println(nax);
const int pre_n = 2e7;
vl pre_G(pre_n + 1); // pre-calculate some items of G
const int max_v = sqrt(pre_n);
stp(i, 1, max_v + 1, 2) {
const int i2 = i * i;
const int max_j = sqrt(pre_n - i2);
stp (j, 2, max_j + 1, 2) {
if (__gcd(i, j) == 1) {
pre_G[i2 + j * j]++;
}
}
}
rng (i, 1, pre_n + 1) {
pre_G[i] += pre_G[i - 1];
}
const int max_d = sqrt(nax/2);
const auto mu = get_mu(max_d);
auto G = [&mu, &pre_G, pre_n](int n) { // # of primitive Pythagorean triples with c <= n
if (n <= pre_n) return pre_G[n];
ll ans = 0;
const int max_gcd = sqrt(n / 2);
const int tmp = (int)sqrt(n);
rng (d, 1, max_gcd + 1) {
ll sum = 0;
const int max_i = tmp / d;
for (int i = 1; i <= max_i; ) {
const int arg = int(sqrt(n - sq(i*d))) / d;
const int j = int(sqrt(n - sq(arg * d))) / d;
sum += (j - i + 1) * arg;
if (d & 1) {
sum -= (j - i + 1 + (i & 1)) / 2 * ((arg + 1) / 2);
}
i = j + 1;
}
ans += sum * mu[d];
}
return ans / 2;
};
auto F = [&](int n) { // # of Pythagorean triples with c <= n
ll ans = 0;
for (int i = 1; i <= n; ) {
int arg = n / i;
int j = n / arg;
ans += 1LL * (j - i + 1) * G(arg);
i = j + 1;
}
return ans;
};
int T; scan(T); rep (T) {
int n; scan(n);
println(F(n));
}
#ifdef LOCAL
cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.
";
#endif
return 0;
}