此必要条件也可用另一种方法推导出来:
由于 $sum_{i = 1}^{N} (a_i + b_i) ge sum_{i=K}^{K+2N-1} i $ 且 $sum_{i=1}^{N} c_i le sum_{i = K+2N}^{K+3N-1} i$,因此 $sum_{i = 1}^{N} (a_i + b_i) le sum_{i=1}^{N} c_i implies sum_{i=K}^{K+2N-1} i le sum_{i = K+2N}^{K+3N-1} i implies 2K - 1le N$。
构造
the pattern is $(x, y)$, $(x+2, y -1)$, ...
例子
$K = 2, N = 6$
egin{matrix}
3 & 5 & enclose{right}{7} & 2 & 4 & 6 \
10 & 9 & enclose{right}{8} & 13 &12 & 11 \
hline
14 & 15 & 16 & 17 & 18 & 19
end{matrix}
$K = 2, N = 7$
egin{matrix}
2 & 4 & 6 & 8 & 3 & 5 & 7 \
15 & 14 & 13 & 12 & 11 & 10 & 9 \
hline
19 & 20 & 21 & 22 & 16 & 17 & 18
end{matrix}