zoukankan      html  css  js  c++  java
  • HDU 4388 To the moon

    传送门

    To the moon

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

    Problem Description

    Background

    To The Moon is a independent game released in November 2011, it is a role-playing adventure game powered by RPG Maker.
    The premise of To The Moon is based around a technology that allows us to permanently reconstruct the memory on dying man. In this problem, we'll give you a chance, to implement the logic behind the scene.

    You‘ve been given $N$ integers $A_1, A_2, dots, A_n$. On these integers, you need to implement the following operations:
    1. C $l$ $r$ $d$: Adding a constant $d$ for every ${A_i mid l le i le r }$, and increase the time stamp by 1, this is the only operation that will cause the time stamp increase.
    2. Q $l$ $r$: Querying the current sum of ${A_i mid l le i le r}$.
    3. H l r t: Querying a history sum of {Ai | l <= i <= r} in time t.
    4. B t: Back to time t. And once you decide return to a past, you can never be access to a forward edition anymore.
    .. N, M ≤ 105, |A[i]| ≤ 109, 1 ≤ l ≤ r ≤ N, |d| ≤ 104 .. the system start from time 0, and the first modification is in time 1, t ≥ 0, and won't introduce you to a future state.
     

    Input

    n m
    A1 A2 ... An
    ... (here following the m operations. )
     

    Output

    ... (for each query, simply print the result. )

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    2 4
    0 0
    C 1 1 1
    C 2 2 -1
    Q 1 2
    H 1 2 1

    Sample Output

    4
    55
    9
    15
    0
    1

    Author

    HIT

    Source


    Solution

    裸的可持久化线段树,但卡空间,只给 64 M。这是我写的第 3 道可持久化线段树的题目。
    这篇随笔主要讨论:可持久化线段树在维护区间更新(相对于单点更新而言)操作,需要打懒标记(lazy-tag,以下简称“标记”或“tag”)时如何节省空间(内存)。
    另外这个题目还涉及到一个“时间倒流”的操作——回到线段树的某个之前版本并删除在此之后的所有版本,我们也简单讨论下在这个操作后如何回收后续版本占用的空间
     
    可持久化数据结构用于维护某个数据结构的不同历史版本,在逻辑上我们应当认为这些不同的version属于同一个object。一般来说,一个数据结构由若干元素构成,可持久化数据结构的思想是:相邻两个版本共用相同元素,在后一版本中只新建被更改了的元素。线段树(属于二叉树)的元素就是节点,节点维护着某个区间的信息。
     
    当我们修改一个节点时当然要新建一个节点作为该节点的当前版本;如果该节点上有标记,非可持久化线段树的写法是:先将该标记push-down到两个子节点上,然后把当前节点的标记消除,最后再从两个子节点push-up来更新该节点。如果可持久化线段树也按这种方式处理标记,那么每次push-down就需要新建两个子节点,这两个子节点是和修改之前的父节点同一版本的,而不是当前版本的(“当前版本”是指修改之后的父节点的版本)。这样在query和update的过程中,push-down会新建大量节点,而且这么做还有一个弊端——它导致属于同一版本的新建节点在数组中不连续,这一点后面还会谈到。
     
    对于标记还有另为一种处理方法——Never push down
    在 query 或 update 的过程中不 push-down 任何节点的 tag,查询时,如果当前节点有标记,就把该标记对要查询的区间 $[l, r]$ 和该节点表示的区间 $[L, R]$ 的交集 $[max(l, L), min(r, R)]$ 的贡献更新到答案中去。
     
    这么做的效果就是:
    1. 只有被修改了的节点才会被新建,而这正是我们所期望的。(注意:从逻辑上讲,上个方法中 push-down 新建的那两个子节点在之前的某个本中就存在了,只是没有建出来。)
    2. 属于同一版本的新建节点在数组中是连续的,而且显然相邻版本的新建节点也是相邻的。

    这样对于回到 $t$ 时刻的“时间倒流”操作,只要把数组的 $mathrm{tail}$ 直接置成 $mathrm{tail}_t$ 就好了。($t$ 时刻内新建的节点在 $[mathrm{tail}_{t-1}, mathrm{tail}_t)$ 区间内)

     Implementation

     
    #include <bits/stdc++.h>
    using namespace std;
    const int N=1e5+5, M=2.5e6+5;
    typedef long long LL;
    int ls[M], rs[M], tail, now, root[N];
    LL add[M], sum[M];
    
    void push_up(int id){
        sum[id]=sum[ls[id]]+sum[rs[id]];
    }
    
    int get_cur(int id, int now){
        return tail++;
    }
    
    LL query(int id, int L, int R, int l, int r){
        if(l>R || L>r) return 0;
        if(l<=L && R<=r) return sum[id];
        int mid=L+R>>1;
        return add[id]*(min(R, r)-max(L, l)+1)+query(ls[id], L, mid, l, r)+query(rs[id], mid+1, R, l, r);
    }
    
    int Add(int id, int L, int R, int l, int r, int v){
        if(l>R || L>r)  return id;
        int cur=get_cur(id, now);
    
        add[cur]=add[id], sum[cur]=sum[id]+(min(R, r)-max(L, l)+1)*v;   //copy tag only
    
        if(l<=L && R<=r){
            add[cur]+=v;
            ls[cur]=ls[id], rs[cur]=rs[id];
        }
    
        else{
            int mid=L+R>>1;
            ls[cur]=Add(ls[id], L, mid, l, r, v);
            rs[cur]=Add(rs[id], mid+1, R, l, r, v);
        }
        return cur;
    }
    
    void init(int id, int L, int R){
        add[id]=0;
        if(L==R){
            scanf("%lld", sum+id);
            return;
        }
        int mid=L+R>>1;
        init(ls[id]=tail++, L, mid);
        init(rs[id]=tail++, mid+1, R);
        push_up(id);
    }
    
    int main(){
        // cout<<M<<endl;
        for(int n, m; cin>>n>>m; ){
            now=0, tail=0, init(root[now]=tail++, 1, n);
            char op[2];
            int l, r, d, t;
    
            for(; m--; ){
                scanf("%s", op);
                if(*op=='C'){
                    scanf("%d%d%d", &l, &r, &d);
                    ++now, root[now]=Add(root[now-1], 1, n, l, r, d);    //error-prone
                }
                else if(*op=='Q'){
                    scanf("%d%d", &l, &r);
                    printf("%lld
    ", query(root[now], 1, n, l, r));
                }
                else if(*op=='H'){
                    scanf("%d%d%d", &l, &r, &t);
                    printf("%lld
    ", query(root[t], 1, n, l, r));    //error-prone
                }
                // you can never access a forward edition anymore.
                else scanf("%d", &t), now=t;
            }
        }
    }
     
     
  • 相关阅读:
    冒泡排序
    pdo 单例类
    php 事物处理
    支付宝支付
    反向代理和负载均衡
    execl导出
    网络层
    OSI 7层 TCP/IP 4层 综合5层
    面试总结
    CMD AMD
  • 原文地址:https://www.cnblogs.com/Patt/p/5776837.html
Copyright © 2011-2022 走看看