zoukankan      html  css  js  c++  java
  • Rearrangement inequality

    摘抄自:  https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof

    In mathematics, the rearrangement inequality[1] states that

    x_{n}y_{1}+cdots +x_{1}y_{n}leq x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}leq x_{1}y_{1}+cdots +x_{n}y_{n}

    for every choice of real numbers

    x_{1}leq cdots leq x_{n}quad {	ext{and}}quad y_{1}leq cdots leq y_{n}

    and every permutation

    {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}}

    of x1, . . ., xn. If the numbers are different, meaning that

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

    Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

    Proof[edit]

    The lower bound follows by applying the upper bound to

    -x_{n}leq cdots leq -x_{1}.

    Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

    x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}

    is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

    We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now

    j<kRightarrow y_{j}leq y_{k}qquad {	ext{and}}qquad j<sigma (j)Rightarrow x_{j}leq x_{{sigma (j)}}.quad (1)

    Therefore,

    0leq (x_{{sigma (j)}}-x_{j})(y_{k}-y_{j}).quad (2)

    Expanding this product and rearranging gives

    x_{{sigma (j)}}y_{j}+x_{j}y_{k}leq x_{j}y_{j}+x_{{sigma (j)}}y_{k}\,,quad (3)

    hence the permutation

    which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

    If

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

    Generalization[edit]

    A Generalization of the Rearrangement inequality states that for all real numbers {displaystyle x_{1}leq cdots leq x_{n}} and any choice of functions {displaystyle f_{i}:[x_{1},x_{n}]
ightarrow mathbb {R} ,i=1,2,...,n} such that

    {displaystyle f'_{1}(x)leq f'_{2}(x)leq ...leq f'_{n}(x)quad forall xin [x_{1},x_{n}]}

    the inequality

    {displaystyle sum _{i=1}^{n}f_{i}(x_{n-i+1})leq sum _{i=1}^{n}f_{i}(x_{sigma (i)})leq sum _{i=1}^{n}f_{i}(x_{i})}

    holds for every permutation {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}} of {displaystyle x_{1},dots ,x_{n}}[2].

     

  • 相关阅读:
    pip install pli 提示:Could not find a version that satisfies the requirement PIL
    关于selenium部分元素定位不到的解决办法
    ERROR 1054 (42S22): Unknown column ‘password‘ in ‘field list‘
    通过Tomcat jpress连接不到数据库
    Navicat MySQL 连接出现 Authentication plugin ‘caching_sha2_password‘ cannot be loaded
    Selenium中核心属性以及方法
    selenium中定位frame中的元素
    selenium中截屏以及按照时间格式保存到相应文件夹
    Selenium中核心属性以及方法
    selenium中关于js脚本的一些操作
  • 原文地址:https://www.cnblogs.com/Paul-Guderian/p/10022298.html
Copyright © 2011-2022 走看看