zoukankan      html  css  js  c++  java
  • Rearrangement inequality

    摘抄自:  https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof

    In mathematics, the rearrangement inequality[1] states that

    x_{n}y_{1}+cdots +x_{1}y_{n}leq x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}leq x_{1}y_{1}+cdots +x_{n}y_{n}

    for every choice of real numbers

    x_{1}leq cdots leq x_{n}quad {	ext{and}}quad y_{1}leq cdots leq y_{n}

    and every permutation

    {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}}

    of x1, . . ., xn. If the numbers are different, meaning that

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

    Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

    Proof[edit]

    The lower bound follows by applying the upper bound to

    -x_{n}leq cdots leq -x_{1}.

    Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

    x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}

    is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

    We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now

    j<kRightarrow y_{j}leq y_{k}qquad {	ext{and}}qquad j<sigma (j)Rightarrow x_{j}leq x_{{sigma (j)}}.quad (1)

    Therefore,

    0leq (x_{{sigma (j)}}-x_{j})(y_{k}-y_{j}).quad (2)

    Expanding this product and rearranging gives

    x_{{sigma (j)}}y_{j}+x_{j}y_{k}leq x_{j}y_{j}+x_{{sigma (j)}}y_{k}\,,quad (3)

    hence the permutation

    which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

    If

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

    Generalization[edit]

    A Generalization of the Rearrangement inequality states that for all real numbers {displaystyle x_{1}leq cdots leq x_{n}} and any choice of functions {displaystyle f_{i}:[x_{1},x_{n}]
ightarrow mathbb {R} ,i=1,2,...,n} such that

    {displaystyle f'_{1}(x)leq f'_{2}(x)leq ...leq f'_{n}(x)quad forall xin [x_{1},x_{n}]}

    the inequality

    {displaystyle sum _{i=1}^{n}f_{i}(x_{n-i+1})leq sum _{i=1}^{n}f_{i}(x_{sigma (i)})leq sum _{i=1}^{n}f_{i}(x_{i})}

    holds for every permutation {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}} of {displaystyle x_{1},dots ,x_{n}}[2].

     

  • 相关阅读:
    maven项目部署到tomcat中没有classe文件的问题汇总
    Tomcat远程调试模式及利用Eclipse远程链接调试
    FastDFS 常见问题
    Linux Crontab 定时任务 命令详解
    EChart 关于图标控件的简单实用
    java 通过zxing生成二维码
    Mybatis typeAliases别名
    Mybatis 实现手机管理系统的持久化数据访问层
    Mybatis 实现传入参数是表名
    Mybatis关于like的字符串模糊处理
  • 原文地址:https://www.cnblogs.com/Paul-Guderian/p/10022298.html
Copyright © 2011-2022 走看看