zoukankan      html  css  js  c++  java
  • Rearrangement inequality

    摘抄自:  https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof

    In mathematics, the rearrangement inequality[1] states that

    x_{n}y_{1}+cdots +x_{1}y_{n}leq x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}leq x_{1}y_{1}+cdots +x_{n}y_{n}

    for every choice of real numbers

    x_{1}leq cdots leq x_{n}quad {	ext{and}}quad y_{1}leq cdots leq y_{n}

    and every permutation

    {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}}

    of x1, . . ., xn. If the numbers are different, meaning that

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

    Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

    Proof[edit]

    The lower bound follows by applying the upper bound to

    -x_{n}leq cdots leq -x_{1}.

    Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

    x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}

    is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

    We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now

    j<kRightarrow y_{j}leq y_{k}qquad {	ext{and}}qquad j<sigma (j)Rightarrow x_{j}leq x_{{sigma (j)}}.quad (1)

    Therefore,

    0leq (x_{{sigma (j)}}-x_{j})(y_{k}-y_{j}).quad (2)

    Expanding this product and rearranging gives

    x_{{sigma (j)}}y_{j}+x_{j}y_{k}leq x_{j}y_{j}+x_{{sigma (j)}}y_{k}\,,quad (3)

    hence the permutation

    which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

    If

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

    Generalization[edit]

    A Generalization of the Rearrangement inequality states that for all real numbers {displaystyle x_{1}leq cdots leq x_{n}} and any choice of functions {displaystyle f_{i}:[x_{1},x_{n}]
ightarrow mathbb {R} ,i=1,2,...,n} such that

    {displaystyle f'_{1}(x)leq f'_{2}(x)leq ...leq f'_{n}(x)quad forall xin [x_{1},x_{n}]}

    the inequality

    {displaystyle sum _{i=1}^{n}f_{i}(x_{n-i+1})leq sum _{i=1}^{n}f_{i}(x_{sigma (i)})leq sum _{i=1}^{n}f_{i}(x_{i})}

    holds for every permutation {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}} of {displaystyle x_{1},dots ,x_{n}}[2].

     

  • 相关阅读:
    学习:Intents和Intent Filters(理论部分)
    天书夜读:从汇编语言到Windows内核编程笔记(1)
    学习:Intents和Intent Filters(实例部分)
    寒江独钓(1):内核数据类型和函数
    寒江独钓(2):串口的过滤
    学习:了解WDK目录
    Nginx 414 RequestURI Too Large 海口
    Ansible 批量修改密码 海口
    记一次node进程无法kill 问题 海口
    Vue学习心得新手如何学习Vue(转载)
  • 原文地址:https://www.cnblogs.com/Paul-Guderian/p/10022298.html
Copyright © 2011-2022 走看看